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Friction brakes generate braking torque through the friction force between 

rotating (disk, drum) and non-rotating (pad, band) components. Drum-type 

brakes are primarily used in heavy-duty vehicles. To initiate braking, the shoe is 

pressed against the drum, creating contact pressure between the pressed 

surfaces. Tangential stresses arising from drum rotation produce the braking 

torque. 

The braking torque in the brake mechanism depends on the contact pressure and 

the coefficient of friction between the compressed surfaces. With a large 

compressive force, the deformations of the drum and shoe differ, altering the 

drum's round cross-section and causing variations in braking force at different 

moments. Therefore, accurately determining contact pressure is crucial for 

drum brakes. 

This article focuses on calculating braking torque by determining the deforma-

tions of the mold as close to real-world conditions as possible. 
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Introduction 

In existing methods of calculating brake mechanisms, four laws of pressure forces are 

accepted a priori: constant g = const, sinusoidal maxg g sin , cosine maxg g cos  and square si-

nusoidal 2

maxg g sin   by the length of the block. There is currently no single method for 

calculating brake parameters. 

The pressure is distributed along the length of the shoe according to a sinusoidal law if the 

friction drum and brake shoes are absolutely rigid, the friction lining is ideally adjusted to the 

drum, and the deformation of the friction lining obeys Hooke's law. At high compression force, 

the deformations of the drum and shoe differ, changing the circular cross-section of the drum 

and causing changes in the braking force at different moments. The sinusoidal distribution law is 

typical for service braking; during braking with greater intensity, due to the increase in 

deformation of the shoes and the drum, which acquires an oval shape, it is distorted and 

approaches uniform [1]. 

The opposite of this is the cosine law, when the concentration of the specific load is observed 

in the middle part of the brake shoe, and an equal decrease in load is observed towards the edges 

of the advancing and escaping parts of the brake shoe. According to the statements presented in 
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the work, the cosine law reflects the ovality of the rotating brake drum, which negatively affects 

the wear of the middle part of the shoe. 

Determination of contact pressure 

In fact, the true distribution of contact pressure is unknown in advance and must be 

determined from the solution of the contact problem for the lining - drum system. The material 

of the drum and the friction lining of the brake shoe is modeled by an elastic medium, the 

mechanical characteristics of which will be Е1, 𝜇1 and Е2, 𝜇2, respectively. 

For any law of pressure distribution, the braking moment is determined through the 

resultant force of all elementary forces applied at a point whose coordinates are determined by 

the reduced radius and angle. 

 

Figure 1. Diagram of forces acting on the shoe of a drum brake mechanism: where                                                                                    

p – is the pressure on the linings; dF – is the elementary area of the lining; b is the width of the lining;                                              

rb –is the radius of the drum; β – is the angular coordinate of the elementary area 

The shoe is pressed against the brake drum under the action of force P. When the drum 

rotates in the direction indicated by the arrow, interaction forces arise between the drum and the 

shoe lining: the elementary normal force dPn and elementary tangential force dP. 

To determine the total braking torque created by the shoe, it is necessary to know how the 

pressure changes along the length of the lining. As seen in the diagram, the resultant friction 

force (conditional) 0

nP acts at a radius , which depends on the angle β0 = 90 – 120. In 

calculations of braking torque, the resultant friction force is usually reduced to the radius of the 

brake drum, allowing the use of simplified formulas. However, this approach provides 

approximate values, which are insufficient for designing brake mechanisms. Therefore, we strive 

to determine the contact pressure more accurately by considering deformations and 

displacements during the drum-shoe contact in the braking process. 

Let us assume that the friction lining is pressed into the inner surface of the drum over a 

certain section. A normal force (pressing force) is applied by an eccentric to each unit of length of 

the lining. It is assumed that the contact area extends across the entire width of the friction lining 

and does not change over time during braking. In the contact zone, in addition to normal forces 

(pressures) ( ,  )g t , tangential stress τ(𝜃, t) also acts 

 
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associated with the contact pressure g(𝜃, t) according to Coulomb's law 

( ,  )  ( ,  ),g t f g t                                                       (2) 

where f is the coefficient of friction of the pair, “drum – lining”. We assume that under the action 

of specific forces, ( ,  )g t both ( ,  )t  the drum and the friction lining are in a state of plane 

deformation. 

Let us establish the relationships between the components of the displacements that occur in 

the contact area during vehicle braking [5-8]. We place the origin of the coordinates at the point 

of initial contact between the friction lining and the drum. Under the action of the pressing force, 

the lining will experience a displacement (settlement) of δ2, and the drum will experience a 

displacement of 𝛿1. Point A, located on the surface of the lining, and point B, which comes into 

contact with it and is located on the inner surface of the drum, experience displacements of 1 

and 2 in the radial direction, respectively, as a result of elastic deformation. Since the coordinates 

of points A and B become identical after they come into contact, this allows us to write the 

condition relating the displacements of the drum and the lining in the following form 

   1 2 0 1 ,         
 

Here δ(𝜃) is the settlement of the points of the surface of the drum and the lining, 

determined by the shape of the stamp base and the magnitude of the force F acting on it, 𝜃0, 𝜃1 – 

angles of the beginning and end of the pad coverage. 

Let us now move on to finding the radial displacements v1 and v2. 

Tangential forces ( ,  )t  contribute to heat generation in the contact zone, with the total 

amount of heat per unit time being proportional to the friction power, and the amount of heat 

generated at a point in the contact area with coordinate 𝜃 is as follows 

     , , , ,Q t V t V f g t                                              (3) 

where 
bV r is the initial speed of movement of the drum surface points during braking; 

ω and br  are the angular velocity and radius of the drum. 

The amount of heat Q(θ, t) will be spent on the heat flow into the brake drum Q∗ and a 

similar heat flow Q∗ on increasing the temperature of the friction lining, i.e. 

 , .Q t Q Q 

                                                      (4) 

In [1-4, 9-10] it is recommended to use the average effective heat flow distribution coefficient 

in the calculation, which for one of the elements of the friction pair will be  
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For the other element of the pair 

1 21 .TP TP  
 

Here 2

01 i T iF a t b is the Fourier number; bi is the thickness of the friction pair element; αi is 

the thermal diffusivity coefficient; tT – duration of a single braking in sec.; ΨV1 – coefficient taking 

into account the effective volume participating in heat absorption; i – thermal conductivity 

coefficient. 

Based on the above, for the radial displacement v 1 – we will have [9, 10] 

1 1 1 1 .y T mpv v v v  
 

Here the term 1yv represents the elastic displacements of the points of the contact surface of 

the drum, 1Tv  - thermoelastic displacements caused by the temperature difference in the drum, 

term 1mpv  represent movements caused by the removal of micro-protrusions from the inner 

surface of the drum. 

To determine 1yv – it is necessary to solve the following auxiliary problem of elasticity theory 

on the inner surface of the drum at
0 1,     

  0

0

; 0 ;

0; 0 .

r r b

r r

g at r r

at r R

  

 

   
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                                          (5) 

Here g(𝜃) is an as yet unknown distribution function of contact stresses; R is outer radius of 

the drum.  

To find 1rv it is necessary to solve the thermoelastic problem for a drum on the boundary of 

which there are no forces, and a heat source acts on the contact area. 

 

3. Solution of the elastic problem 

As is known [8], the stress state in an elastic body in the case of a plane problem in polar coor-

dinates is determined by three stress components: , ,r r     which satisfy two equilibrium 

equations: 
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Here Ф(z) and Ψ (z) are arbitrary analytic functions of the complex variable z = x + iy in the 

region occupied by the elastic medium; E is the Young's modulus of the material; 𝜇 is the 

Poisson's ratio of the material; G is the shear modulus. 

Using formulas (6), we write the boundary conditions of the elasticity theory problem in the 

following form 

       
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   (7) 

Expanding the unknown function g(𝜃) on the inner contour r r in a Fourier series, we will 

have 

  0

1 1

cos sin .n n

n n

g A A n B n  
 

 

                                             (8) 

Here 

   
1 1

0 0

1 1
cos ; sin .n nA g n d B g n d

 

 

     
 

    

The expansion (2.3.5) can be rewritten as follows 
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We seek the solution to the boundary value problem in the form [70] 
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Omitting the cumbersome calculations, we present the solution of problem (5) of elasticity 

theory 
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  

   
 

   




   
 



   
 



   
 



     

                                                          (14) 

 

CONCLUSION 

To improve the accuracy of calculations for brake shoe-drum brake mechanisms, a method 

is proposed for determining the deformations of contacting surfaces and the contact stresses that 

arise in the shoe-drum pair during braking. Based on this approach, the problem of elasticity in 

the deformation of parts is addressed, and a method for the numerical calculation of contact 

stress is developed. Calculating contact stresses using modern computer technologies is 

straightforward. 

In the future, to enhance the accuracy of calculations, it is proposed to consider thermoelas-

tic deformations, displacements caused by the compression of micro-steps, and determine the 

total displacement of the contact points between the lining and the drum during braking. 

Determining the actual displacement will enable the development of a new approach to 

calculating drum-type brake mechanisms. 
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