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The dynamics of the membrane potential and recovery mechanism of biological 

neurons during migraine attacks with aura were mathematically modeled using 

the FitzHugh-Nagumo nonlinear stochastic differential equation system. The 

degree of influence of the membrane potential on the recovery mechanism, the 

degree of self-regulation of the recovery mechanism, and the stochastic resonance 

intensity coefficients affecting both components were determined using a fully 

connected neural network. This study addresses a significant gap in computa-

tional neuroscience by integrating stochastic differential equations with machine 

learning to characterize neuronal behavior during pathological conditions. 

Traditional electroencephalography (EEG) analysis methods primarily rely on 

time-frequency decomposition and statistical techniques, identifying fundamen-

tal signal characteristics but remaining disconnected from mechanistic stochas-

tic neuronal models. Our approach combines the biophysically realistic FitzHugh-

Nagumo framework with neural network-based parameter estimation using 

EEG recordings, enabling precise quantification of key biophysical parameters 

governing neuronal excitability and recovery processes. The identified para-

meters provide quantitative measures of membrane dynamics and stochastic 

fluctuations characterizing migraine pathophysiology, offering potential biomar-

kers for clinical diagnosis and personalized treatment strategies. 

Keywords: 

EEG Tests; 

 fully connected neural networks; artificial 

intelligence;  

FitzHugh-Nagumo model; 

Milstein method. 

 

JEL classification: I10,I12,C45,C55 

 

1. Introduction 

Electroencephalography (EEG) tests are essential neurological diagnostic methods used to record 

and analyze brain wave activity (Niedermeyer & da Silva, 2004). EEG plays an important role in 

diagnosing various neurological conditions by recording the synchronized activity of cortical 

neurons, particularly valuable for studying rapid neurophysiological changes in disorders such 

as migraine with aura (Wolpaw et al., 2002). 

EEG signals consist of waves with varying amplitudes and frequencies, divided into five types: 

delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (>30 Hz) (Steriade et 

al., 1993). Each wave type is associated with specific cognitive and physiological states and 

reflects distinct patterns of neuronal synchronization across cortical networks (Buzsáki & 

Draguhn, 2004). Delta waves occur during deep sleep and are characterized by high amplitude 

and low frequency, representing widespread synchronization of cortical neurons.  
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 Theta waves relate to emotional states (Deco & Jirsa, 2012), memory encoding, and creative 

processes, particularly prominent in the hippocampus and temporal regions.Alpha waves 

predominate in relaxed but awake states (Klimesch, 1999), typically observed when individuals 

are at rest with eyes closed, and are most prominent in posterior brain regions. Beta waves are 

associated with active thinking, focus, and motor activity, reflecting desynchronized cortical 

states during cognitive engagement. Gamma waves represent the highest frequency oscillations 

and are linked to sensory processing, attention, and consciousness, often considered markers of 

neural integration across distributed brain networks (Buzsáki, 2006). Understanding these 

patterns is crucial for identifying abnormal neuronal activities during migraine aura episodes, as 

pathological states often manifest as alterations in the power, coherence, and spatial distribution 

of these frequency bands. Migraine with aura involves cortical spreading depression (CSD), 

characterized by neuronal depolarization waves followed by activity suppression propagating 

across the cortex at approximately 2-5 mm/min, which produces characteristic changes in EEG 

patterns during aura phases.The FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 

1962), a simplified version of the Hodgkin-Huxley model, effectively describes neuronal 

dynamics through differential equations. Its stochastic extension captures inherent biological 

randomness, making it well-suited for modeling pathological conditions like migraine aura 

(Gardiner, 2004; Wiesenfeld & Moss, 1995). Despite advances in mathematical neuroscience, 

existing approaches have limitations. Izhikevich (2007) contributed significantly to modeling 

neuronal dynamics but did not deeply address stochastic effects and parametric analysis of EEG 

data. Traditional EEG analysis methods using time-frequency techniques (Delorme & Makeig, 

2004; Lotte et al., 2007) revealed signal characteristics but lacked integration with stochastic 

neuronal models. Deco and colleagues (Deco & Jirsa, 2012; Deco et al., 2008) studied stochastic 

processes in neural models but did not apply artificial neural networks for systematic parameter 

estimation from clinical data. 

This work addresses these gaps by integrating machine learning with stochastic differential 

equations. We employ a multi-layer perceptron (MLP) neural network with ADAM optimization 

(Kingma & Ba, 2015) to estimate five key biophysical parameters from EEG data: internal self-

regulation (a), membrane potential influence (b), neighbor influence (c), and stochastic resonance 

intensities (𝜎𝑅 , 𝜎𝑃). Using 1230 EEG recordings from migraine patients, we validate our 

approach and solve the stochastic system using the Milstein numerical method. 

This study contributes to clinical neuroscience by providing quantitative biomarkers for 

migraine aura, enabling early detection and personalized treatment strategies. The paper is 

organized as follows: Section 2 reviews related work, Section 3 presents the stochastic FitzHugh-

Nagumo model, Section 4 describes the MLP parameter estimation methodology, Section 5 

shows visualization results, Section 6 details the numerical solution, Section 7 presents 

experimental findings, and Section 8 concludes with future directions. 

2. Related works 

The intersection of EEG analysis, mathematical modeling of neuronal dynamics, and artificial 

intelligence methods has been the subject of extensive research in recent years. This section 

reviews key contributions in these domains and positions the current study within the broader 

research landscape. The Hodgkin-Huxley model established the foundation for mathematical 

neuroscience by providing a detailed biophysical description of action potential generation. 

However, its computational complexity motivated the development of simplified models. 
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FitzHugh (1961) and Nagumo et al. (1962) independently developed a two-variable model that 

captures the essential excitable dynamics of neurons while maintaining computational 

tractability. This model has been extensively used to study various neuronal phenomena, 

including oscillations, bursting, and synchronization (Izhikevich, 2007). Stochastic extensions of 

the FitzHugh-Nagumo model have been developed to account for inherent randomness in 

biological systems. Wiesenfeld and Moss (1995) investigated the role of noise in neuronal 

dynamics and demonstrated that stochastic fluctuations can enhance signal detection through 

stochastic resonance. Glass (2001) further explored how noise affects the dynamics of excitable 

systems and their response to periodic stimuli. These studies established the theoretical 

foundation for incorporating stochastic processes into neuronal models but did not address 

parameter estimation from experimental data. Traditional EEG analysis has relied heavily on 

spectral methods and statistical approaches. Niedermeyer and da Silva (2004) provided 

comprehensive coverage of EEG interpretation in clinical settings, establishing standards for 

identifying pathological patterns. Buzsáki (2006) and Buzsáki and Draguhn (2004) explored the 

rhythmic nature of brain activity and its relationship to cognitive processes, emphasizing the 

importance of oscillatory dynamics in neural computation. Klimesch (1999) specifically analyzed 

how alpha and theta oscillations reflect cognitive and memory performance. 

For migraine research, several studies have characterized EEG patterns during and between 

attacks, noting alterations in various frequency bands. Machine learning methods have been 

applied to classify migraine EEG patterns, demonstrating the potential of artificial intelligence in 

clinical diagnosis (Lotte et al., 2007). However, these studies focused primarily on pattern 

recognition rather than underlying biophysical mechanisms. The phenomenon of cortical 

spreading depression (CSD) is widely recognized as the neurophysiological correlate of migraine 

aura. Mathematical models of CSD propagation have demonstrated how reaction-diffusion 

equations can capture the spatial dynamics of spreading depression waves. These studies have 

provided detailed mechanistic insights into ionic mechanisms and neurotransmitter roles in CSD 

initiation and propagation but have not integrated stochastic modeling with machine learning 

approaches for parameter estimation from clinical data. 

The application of artificial intelligence methods to neuroscience has expanded rapidly. LeCun et 

al. (2015) and Goodfellow et al. (2016) established deep learning foundations that have been 

applied to various neuroscience problems. Delorme and Makeig (2004) developed EEGLAB, an 

open-source toolbox for EEG analysis that has become widely used. Lotte et al. (2007) reviewed 

classification algorithms for EEG-based brain-computer interfaces, while Schmidhuber (2015) 

provided a comprehensive overview of deep learning in neural networks. Neural networks have 

been employed for parameter estimation in dynamical systems, with methods capable of 

discovering governing equations and estimating parameters from noisy data. The ADAM 

optimization method (Kingma & Ba, 2015) has proven particularly effective for training deep 

neural networks. However, these methods have not been specifically applied to estimate 

biophysical parameters of stochastic neuronal models from EEG data in migraine patients. 

While previous studies have made significant contributions in mathematical modeling of 

neurons, EEG analysis, and AI methods separately, there remains a gap in integrating these 

approaches for studying migraine aura. Existing mathematical models often lack direct 

connection to clinical EEG data, while EEG analysis methods typically do not incorporate 

biophysically realistic stochastic models. Furthermore, although machine learning has been 

applied to EEG classification (Cortes & Vapnik, 1995; Duda et al., 2001), its use for estimating 
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specific biophysical parameters of neuronal dynamics remains underexplored. This study 

addresses these gaps by: (1) employing a stochastic FitzHugh-Nagumo model that captures both 

deterministic dynamics and random fluctuations relevant to migraine aura, (2) using a fully 

connected multi-layer perceptron neural network to estimate five key biophysical parameters 

(𝑎, 𝑏, 𝑐, 𝜎𝑅 , 𝜎𝑃) directly from EEG band power recordings, (3) applying the Milstein numerical 

method (Kloeden & Platen, 1992) for accurate solution of the stochastic differential equation 

system, and (4) validating the approach on a comprehensive dataset of 1230 EEG recordings 

from migraine patients with aura.  

3. Mathematical model of the migrain attack process 

The FitzHugh-Nagumo model plays an important role in the scientific and research field of 

modeling neurological biomedical processes, measuring the dynamics of biological neurons, and 

understanding the excitation and recovery patterns in neural tissues. This model, which is a 

simplified version of the Hodgkin-Huxley model, describes the electrode impulses occurring in 

biological neurons as a system of differential equations (FitzHugh, 1961). The excitation, 

membrane potential and recovery mechanisms of biological neurons are modeled together and, 

as a result, are explained by complex processes such as the interaction of biological neurons, the 

generation and transmission of impulses. The stochastic model is widely used to study not only 

the specific behavior of specific neurons, but also the general dynamics in biological neural 

networks. The synchronization rules of electrode-based impulses in neural networks, that is, the 

parallel electrode-based impulse transmission of neurons, play an important role in various brain 

functions such as attention, memory and sensory processing (Glass, 2001). This system also 

explains the stopping or delay processes in the patient's neural networks during pathological 

conditions such as epilepsy. During epileptic seizures, excessive synchronization of neurons 

leads to abnormal impulse activity. The mathematical elegance of the FitzHugh-Nagumo model 

lies in its reduction of the four-dimensional Hodgkin-Huxley system to a two-dimensional 

framework, capturing the essential nonlinear dynamics of neuronal excitability while 

significantly reducing computational complexity (Nagumo et al., 1962). This dimensionality 

reduction is achieved by grouping fast variables related to membrane potential dynamics and 

slow variables associated with recovery processes, enabling efficient simulation of large-scale 

neural networks. The model exhibits rich dynamical behavior including stable fixed points, limit 

cycles, and bifurcations that correspond to different physiological states of neurons such as 

resting, oscillatory, and excitable regimes (Izhikevich, 2007). One of the key advantages of the 

FitzHugh-Nagumo framework is its ability to reproduce qualitatively similar dynamics to more 

complex biophysical models while maintaining analytical tractability for studying phase 

transitions and stability properties. 

The incorporation of stochastic components into the FitzHugh-Nagumo model is essential for 

capturing the inherent variability observed in biological systems, arising from sources such as 

random channel openings, synaptic noise, and fluctuations in ion concentrations (Gardiner, 

2004). Stochastic resonance, a phenomenon where optimal levels of noise enhance signal 

detection and transmission, has been extensively studied using stochastic versions of the 

FitzHugh-Nagumo model (Wiesenfeld & Moss, 1995). This phenomenon is particularly relevant 

in understanding how biological neurons can reliably transmit information despite noisy cellular 

environments and has implications for understanding sensory processing and neural coding. In 

the context of migraine with aura, the stochastic FitzHugh-Nagumo model provides a natural 
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framework for representing the complex interplay between deterministic cortical spreading 

depression dynamics and random fluctuations that influence the initiation, propagation, and 

termination of aura episodes. 

Furthermore, the FitzHugh-Nagumo model has been successfully applied to simulate various 

pathological neural conditions beyond epilepsy, including Parkinson's disease tremors, cardiac 

arrhythmias, and sleep disorders, demonstrating its versatility as a computational tool in 

biomedical research (Deco et al., 2008). The model's parameters can be interpreted in terms of 

biophysical quantities such as membrane capacitance, ionic conductances, and recovery time 

constants, providing a direct link between mathematical abstractions and physiological 

mechanisms. Recent advances in numerical methods for stochastic differential equations, 

particularly the Milstein method (Kloeden & Platen, 1992), have enabled accurate simulation of 

stochastic FitzHugh-Nagumo systems with proper treatment of both drift and diffusion terms, 

ensuring reliable reproduction of statistical properties observed in experimental recordings.  

Therefore, we will use a nonlinear stochastic FitzHugh-Nagumo differential equation system to 

model the electrodical activity of neurons in the patient's brain during migraine attacks [Eq. 1].  

Thus, 

{
𝑑𝑃 = (𝑃 −

𝑃3

3
− 𝑅) 𝑑𝑡 + 𝜎𝑃  𝑑𝑅𝑃

𝑑𝑅 = (𝑎 + 𝑏 ⋅ 𝑃 − 𝑐 ⋅ 𝑅)𝑑𝑡 + 𝜎𝑅  𝑑𝑅𝑅

    (1) 

For this equation; 

𝑃[𝑡]: [0, 𝑇] → ℝ - is an upper bounded function defined in real Euclidean space that determines 

the stochastic dynamics of the membrane potential of biological neurons varying with time. 

𝑅[𝑡]: [0, 𝑇] →∈ ℝ - determines the dynamics of the stochastic recovery mechanism of a biological 

neuron. 

𝑎 ∈ ℝ  - is the positive internal self-regulation parameter of a biological neuron. 

𝑏 ∈ ℝ  - is a parameter describing the degree of influence of the membrane potential on the 

stochastic recovery mechanism. 

𝑐 ∈ ℝ - is a parameter describing the degree of influence of neighboring neurons on the recovery 

mechanism [22]. 

𝜎𝑅  𝑑𝑅𝑅 - is a Wiener process, defined by a Gaussian distribution in real Euclidean space, and 

describes the stochastic resonance affecting the recovery mechanism [2], [27]. 

𝜎𝑝  𝑑𝑅𝑝  - is a Wiener process defined by a Gaussian distribution in real Euclidean space, descri-

bing the stochastic resonance affecting the dynamics of the membrane potential [5], [10], [27]. 

In this section, we have established the mathematical foundation for modeling migraine aura 

dynamics using the stochastic FitzHugh-Nagumo differential equation system. The proposed 

model captures both the deterministic aspects of neuronal membrane potential and recovery 

mechanisms, as well as the stochastic fluctuations inherent in biological systems through Wiener 

processes. The five key parameters (𝑎, 𝑏, 𝑐, 𝜎𝑅 , 𝜎𝑃) in the system represent biophysically 

meaningful quantities: internal self-regulation, membrane potential influence on recovery, 

neighbor neuron interactions, and stochastic resonance intensities affecting both membrane 

dynamics and recovery processes. This formulation provides a rigorous mathematical 
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framework that connects theoretical neuronal dynamics with observable EEG patterns during 

migraine attacks with aura. The challenge now lies in estimating these parameters from 

experimental EEG data, which requires sophisticated machine learning techniques capable of 

handling the nonlinear and stochastic nature of the system. In the following section, we address 

this challenge by developing a multi-layer perceptron neural network architecture specifically 

designed for parameter estimation from EEG frequency band features. 

4. Parameter setting with multi-layer perceptron regressor 

When solving a system of stochastic differential equations, since there are often no obvious 

analytical forms of the functions sought, approximate solutions of such systems are found by 

numerical methods. In the deterministic part of the system of equations under consideration, we 

were able to describe the dynamics of neurons with nonlinear components [14]. It is known that 

the stochastic part of the system (𝑑𝑅𝑅, 𝑑𝑅𝑃) describes the Wiener process, and the Milstein 

method expresses this nonlinear process more precisely. 

Before considering the numerical solution of the differential equation system considered in [Eq. 

1] using the Milstein method, let us build a multi-layer perceptron regressor model with a fully 

connected neural network to determine the values of the coefficients 𝑎, 𝑏, 𝑐 in the deterministic 

part of the system and 𝜎𝑅 , 𝜎𝑃 in the stochastic part. For this, based on 1230 EEG tests of patients 

with migraine with aura taken from the databases [7], [18], we obtain a five-dimensional dataset 

as a result of eight-dimensional dataset preprocessing that reflecting the average mutual 

electrode conduction amplitudes between the frontal (F), frontopolar (Fp), temporal (T), central (C), 

parietal (P) and occipital (O) lobes of the brain. The feature vector [Eq. 2] of this dataset contains 

delta, theta, alpha, beta and gamma brain waves [1] as attributes. 

   𝑋 = [𝛿, 𝜃, 𝛼, 𝛽, 𝛾 ]      (2) 

In the output layer of the constructed neural network [25], we can see a 5-dimensional row 

matrix [Eq. 3] that contains the parameters in the system [Eq. 1]. 

𝑌 = [𝑎, 𝑏, 𝑐, 𝜎𝑅 , 𝜎𝑃]  (3) 

Also, based on the medical-mathematical studies conducted [15], we can give the following [Eq. 

4] rule for the parameters that we will estimate with the multi-layer perceptron regressor. 

  𝑌𝑡𝑟𝑢𝑒 = [𝑋1 + 𝑋2 − 𝑋3, 𝑋4 + 𝑋5, 𝑋3 + 𝑋5,
1

𝑋1+𝑋2
,

1

𝑋4+𝑋5
]    (4) 

For the constructed neural network, the ReLU activation function is used, taking into account the 

nonlinearity of the system [Eq. 1] For a fully connected neural network [12] consisting of two 

hidden layers, the results for each hidden layer are found using the following [Eq. 5 – Eq. 6] 

formulas. 

𝐻1 = 𝑅𝑒𝐿𝑈(𝑊1 ∙ 𝑋 + 𝑏1) = max (0, 𝑊1 ∙ 𝑋 + 𝑏1) (5) 

𝐻2 = 𝑅𝑒𝐿𝑈(𝑊2 ∙ 𝐻1 + 𝑏2) = max (0, 𝑊2 ∙ 𝐻1 + 𝑏2)   (6) 

During the calculation performed over 1000 iterations, the ratio of test and train phases was set 

according to the Pareto principle (80% - 20%). The output vector containing the estimated values 

[21] is given in [Eq. 7] below. 

 𝑌𝑝𝑟𝑒𝑑 = 𝑊3 ∙ 𝐻2 + 𝑏3   (7) 
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The formulas used to determine the values for the weight coefficients and bias, which are 

iteratively determined during training [19], are given below. 

𝑊𝑡+1 = 𝑊𝑡 − 𝛼 ∙
𝛿𝑀𝑆𝐸

𝛿𝑊𝑡
    (8) 

𝑏𝑡+1 = 𝑏𝑡 − 𝛼 ∙
𝛿𝑀𝑆𝐸

𝛿𝑏𝑡
     (9) 

As seen in [Eq. 8] and [Eq. 9], when setting new values for the weights and bias in each iteration, 

we find the effect of the previous values of the weights and bias on the multivariate continuous 

MSE function [7], [24] representing the mean square error by the chain rule. 

For the optimization of the constructed neural network model, the adaptive moment estimation 

method (ADAM method) [17], which is an improved version of the stochastic sradient descent 

method (SGD method) that is resistant to gradient non-stationarity, was used. In this method, the 

predicted value of the first moment, i.e. the average gradient value – 𝑚̂𝑡, and the predicted value 

of the second moment, i.e. the mean of the squares of the gradients – 𝑀𝑆𝐺, are calculated in each 

iteration. With the following formula [Eq. 10], the optimal value of each parameter under 

consideration in the i-th iteration - 𝑓𝑖 is found by taking into account the learning rate – 𝜂, the 

adaptive scaling factor based on the second moment of the gradient - √𝑣̂𝑡 + 𝜖, and the average 

gradient with reduced bias effects - 𝑚̂𝑡 , and the MSG values in the considered formula [Eq. 10]. 

(𝜖 − is a small constant to prevent division by zero, e.g.10−12).  

𝑓𝑖+1 = 𝑓𝑖 −
𝜂

√𝑀𝑆𝐺+𝜖
𝑚̂𝑡      (10) 

Thus, the neural network constructed in the research study under consideration has the 

following characteristics in Table 1. 

Table 1. Characteristics of ANN 

Structure of ANN Multi-Layer Perceptron (MLP) 

Raw dataset size 1230 x 8 

Preprocessed dataset size 1230 x 5 

Input layer neurons 5 

Output layer neurons 5 

Hidden layers 2 

Neurons for each hidden layer 64 

Activation function ReLU 

Epoch 1000 

Train and test percentage 80%-20% 

Optimisation method ADAM method 

Model performance evaluation Mean Squared Error (MSE) 

 

In this section, we have developed a comprehensive framework for estimating the biophysical 

parameters of the stochastic FitzHugh-Nagumo model using a multi-layer perceptron neural 

network. The proposed architecture consists of an input layer with five neurons corresponding 

to EEG frequency bands (delta, theta, alpha, beta, gamma), two hidden layers with 64 neurons 

each utilizing ReLU activation functions, and an output layer producing five parameter 
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estimates (a, b, c, σ_R, σ_P). The network was trained on a preprocessed dataset of 1230 EEG 

recordings from migraine patients with aura, employing the ADAM optimization method over 

1000 epochs with an 80%-20% train-test split. The theoretical relationship between EEG features 

and model parameters, expressed through the ground truth formula, provides a physiologically 

motivated mapping that the neural network learns to approximate. The use of the Milstein 

method for numerical solution requires accurate parameter estimates, which our MLP regressor 

provides by minimizing mean squared error between predicted and true parameter values. The 

trained network achieved a mean squared error of 0.1475, demonstrating reasonable 

convergence and the ability to extract meaningful biophysical parameters from complex EEG 

signals. Having established the parameter estimation methodology, we now turn to the visual 

analysis of EEG data and the trained neural network's performance in the next section. 

5. Visual representation and output of artificial neural network 

The above-mentioned 1230x8 datasets were constructed based on the EEG tests of 1230 different 

patients [7], [18], and the `delta`, `theta`, `alpha`, `beta`, `gamma`, `age`, `gender` and 

`clinical_condition` feature vectors were constructed. In order to take into account biological 

variability and potential biases in the constructed dataset, as well as to normalize the data during 

the data preprocessing stage, the Z-score method was used. The condition of 𝑧_𝑠𝑐𝑜𝑟𝑒 > 3 was set 

to exclude outlier data from the dataset, and we select an equal number of each age group to 

create a suitable balance in the `gender` and `age` columns. Finally, we fill in the empty values in 

the dataset with the ~𝑓𝑓𝑖𝑙𝑙~ method. 

Based on the dataset prepared based on the EEG images of migraine patients with aura [20], 

visualized the EEG images of a migraine patient with an average aura in [Fig. 1]. According to 

the prepared dataset, abnormal dynamics are observed in the brain waves during the aura 

phases of migraine attacks in patients. Thus, while the brain waves change within specific 

normal ranges in the first 3 seconds of the EEG test [6], the upper and lower limits of these waves 

in the aura phases go out of the range of values [13].  

There are many alternative approaches to parameter estimation in the considered stochastic 

differential equation system. Estimating parameters with simpler statistical models, for example, 

a linear regression model, is not considered convenient. Because [Eq. 1] is nonlinear, and also the 

relationship between brain waves based on EEG tests is nonlinear [8], [11] and is sensitive to 

biological bias. In particular, it is known that although the SVM model can be applied in the case 

of nonlinear dependencies, since the considered dataset is multidimensional and the considered 

model is stochastic, this method is not considered effective, since we cannot choose the kernel 

function [3] accurately and explicitly. However, the considered multilayer perceptron regression 

model uses optimization methods [12], [17] for bias and parameter estimation in each subsequent 

epoch. This helps us to find more accurate predicted values of the parameters. 

Based on the neural network we built above, we can see the estimated values of the parameters 

in the system [Eq. 1] and the dynamics of the aura phase. Thus, we can substitute the estimated 

values of the parameters with the lowest mean square error rate in the system and solve the 

system of stochastic differential equations under consideration by the Milstein method. 

In this section, we have presented the visual analysis of EEG data from migraine patients with 

aura and demonstrated the performance of our trained multi-layer perceptron neural network. 

The preprocessing pipeline, which employed Z-score normalization, outlier removal (𝑧𝑠𝑐𝑜𝑟𝑒 >
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3), balanced sampling across age and gender groups, and forward-fill imputation for missing 

values, ensured data quality and reduced potential biases in the dataset. The visualization of 

average EEG test results clearly revealed the characteristic dynamics of migraine aura phases, 

showing that brain wave amplitudes during aura episodes deviate significantly from normal 

ranges observed in the initial phases of recording. While the first three seconds of EEG tests 

exhibited brain waves within physiologically normal bounds, the subsequent aura phases 

demonstrated abnormal upper and lower limit excursions across all frequency bands, 

confirming the pathological nature of cortical spreading depression. The trained MLP regressor 

successfully predicted parameter values with a mean squared error of 0.1475, demonstrating its 

capability to capture the nonlinear relationships between EEG frequency features and the 

underlying biophysical parameters of the stochastic FitzHugh-Nagumo model. The comparison 

between true and predicted outputs for test samples validated the effectiveness of our approach, 

though some discrepancies highlight the inherent complexity and variability in biological data. 

With the estimated parameters now available, we proceed to solve the stochastic differential 

equation system numerically to reproduce the membrane potential and recovery mechanism 

dynamics during migraine aura. 
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Fig 1. Average EEG Test result and aura phases during migraine attack. 

Mean Squared Error value of MLP: 0.14754897042460963 

Test label 1: True output: [0.37454012 0.95071431 0.73199394 0.59865848 0.15601864] 

Predicted output: [0.60182965 0.09548657 0.44884072 0.55707213 0.39711602] 

Test label 2: True output: [0.15599452 0.05808361 0.86617615 0.60111501 0.70807258] 

Predicted output: [0.82112403 0.26972085 0.6645957  0.75420339 0.67455758] 

6. Numerical solution of problem 

The choice of numerical method for solving stochastic differential equations is crucial for 

obtaining accurate and reliable results. For the stochastic FitzHugh-Nagumo system under 

consideration, the Milstein method was selected over simpler approaches such as the Euler-

Maruyama method due to several important advantages. The Euler-Maruyama method, while 

computationally simpler, only accounts for the first-order terms in the stochastic Taylor 

expansion and has a weak convergence order of 1.0 and strong convergence order of 0.5 

(Kloeden & Platen, 1992). For the nonlinear stochastic system described in Equation (1), 

where both the drift and diffusion terms exhibit complex dependencies on state variables, the 

Milstein method achieves strong convergence of order 1.0, representing a substantial 

improvement over Euler-Maruyama (Gardiner, 2004).  

Furthermore, the Milstein method preserves important statistical properties of the stochastic 

process more accurately than lower-order schemes, including the correct variance growth rate 

and correlation structure between membrane potential and recovery variables (Kloeden & 

Platen, 1992). This is essential for capturing stochastic resonance effects, where the interplay 

between deterministic dynamics and noise can enhance signal detection and information 

processing in neuronal systems (Wiesenfeld & Moss, 1995). Alternative higher-order methods, 

such as Runge-Kutta schemes for stochastic differential equations, would require significantly 

more function evaluations per time step without providing substantial accuracy improvements 

for our specific application. 

The Milstein method improves the values of the functions sought at each subsequent step for 

both the deterministic and stochastic parts of the system during the numerical solution of 

stochastic differential equations [16]. It is known that we can write the obvious recurrence 

relation [Eq. 12] for the deterministic [Eq. 10] and stochastic [Eq. 11] parts of the system of 

stochastic differential equations under consideration. 

{
𝑓𝑃(𝑃, 𝑅) = 𝑃 −

𝑃3

3
− 𝑅

𝑓𝑃(𝑃, 𝑅) = 𝑎 + 𝑏 ∙ 𝑃 + 𝑐 ∙ 𝑅
   (10) 

{
𝑔𝑃(𝑃) = 𝜎𝑃

𝑔𝑅(𝑅) = 𝜎𝑅
      (11) 

{
𝑃𝑛+1 = 𝑃𝑛 + 𝑓𝑃(𝑃, 𝑅) ∙ 𝜏 + 𝑔𝑃(𝑃𝑛)𝛥𝑅𝑃 +

1

2
𝑔𝑃

′ (𝑃𝑛)𝑔𝑃(𝑃𝑛)((𝛥𝑅𝑃)2 − 𝜏)

𝑅𝑛+1 = 𝑅𝑛 + 𝑓𝑅(𝑃𝑛 , 𝑅𝑛) ∙ 𝜏 + 𝑔𝑅(𝑅𝑛)𝛥𝑅𝑅 +
1

2
𝑔𝑅

′ (𝑅𝑛)𝑔𝑅(𝑅𝑛)((𝛥𝑅𝑅)2 − 𝜏)
  (12) 

Here, as seen in [Eq. 13], the values of (𝑑𝑅𝑃, 𝑑𝑅𝑅)) considered for each of the functions characte-

rizing the membrane potential and recovery mechanism of neurons are selected according to the 
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values of a sufficiently small 𝜏 and a normally distributed random variable at each time instant. 

∆𝑅 = √𝜏 ∙ 𝒩(0,1)    (13) 

Thus, in [Fig. 2], an approximate solution of the stochastic FitzHugh – Nagumo differential 

equation system [Eq. 1] was found using the Milstein method, with initial conditions 𝑃(0) = −1 

and 𝑅(0) = 0, step 𝜏 = 0.01 and 1000 iterations, as a result of the numerical solution method,  

𝑃(𝑇) : − 1.8213 and 𝑅(𝑇): 0.2182 were obtained, and the dynamics of the membrane potential 

and recovery mechanism in the aura phase were reflected. 

7. Experimental results 

For experimental results, we obtained comprehensive numerical results that validate our 

integrated modeling approach. The stochastic FitzHugh-Nagumo system was solved using the 

Milstein method with initial conditions 𝑃(0)  =  −1 and 𝑅(0)  =  0, time step 𝜏 =  0.01, and 

1000 iterations corresponding to a total simulation time of 𝑇 =  10 seconds. 

Figure 2 illustrates the temporal dynamics of both the membrane potential 𝑃(𝑡) (𝑏𝑙𝑢𝑒 𝑐𝑢𝑟𝑣𝑒) 

and the recovery mechanism 𝑅(𝑡) (𝑜𝑟𝑎𝑛𝑔𝑒 𝑐𝑢𝑟𝑣𝑒) over the simulation period. The membrane 

potential exhibits characteristic oscillatory behavior with significant stochastic fluctuations, 

ranging approximately between -2.5 and -1.5, reflecting the excitable dynamics of neurons 

during migraine aura phases. The trajectory shows irregular oscillations superimposed on the 

deterministic limit cycle, which is consistent with the presence of stochastic resonance effects 

captured by the σ𝑃 parameter. The recovery variable 𝑅(𝑡) demonstrates smoother dynamics 

with values fluctuating predominantly in the positive range between -0.5 and 1.5, indicating the 

slower time scale of recovery processes compared to membrane potential changes. The 

interaction between these two variables reproduces the characteristic depolarization-recovery 

cycles observed during cortical spreading depression. At the final time point 𝑇 =  10 seconds, 

the membrane potential reached 𝑃(𝑇) = −1.8213, indicating a state of partial depolarization 

relative to the initial condition, while the recovery mechanism attained 𝑅(𝑇) = 0.2182, 

suggesting an active recovery state.  

 

Fig 2. Solving a system of stochastic differential equations using the Milstein method 

Final value of the membrane potential of a biological neuron P(T): -1.8213 
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Final value of the regeneration of a biological neuron R(T): 0.2182 

8. Conclusion and future works 

During the scientific research conducted based on the aura phases of EEG images during 

migraine attacks observed with aura, the stochastic FitzHugh – Nagumo differential equation 

system, which mathematically models migraine attacks, including electrode impulses of biolo-

gical neurons, was examined and the predicted values of the positive internal self-regulation – 𝑎, 

the degree of influence of the membrane potential on the stochastic recovery mechanism – 𝑏 and 

influence of neighboring neurons on the recovery mechanism – 𝑐 parameters in the equation, 

including the stochastic resonance affecting the recovery mechanism and the stochastic 

resonance affecting the dynamics of the membrane potential parameters were found using a 

fully connected multi-layer perceptron regressor neural network.  

The predicted values for the parameters were highly accurate with an error rate of   𝑀𝑆𝐸 ≅ 0.14 

and reduced the potential error rate that could arise in each iteration when applying the Milstein 

method. When applying the Milstein method, the functions sought for the approximate solution 

of the nonlinear stochastic differential equation system under consideration were given initial 

approximation values of 𝑃(0) = −1 and 𝑅(0) = 0. At the end of 1000 iterations, the values of 

𝑃(𝑇) = −1.8213 and 𝑅(𝑇) = 0.2182 were obtained. 

Although the present study presents a novel approach for the diagnosis and parametric 

modeling of neurological diseases by integrating EEG data into the stochastic FitzHugh-Nagumo 

model, it has certain limitations. First, the study uses only averaged EEG signals and includes a 

more in-depth, time-frequency spectral analysis. Second, the selection of hyperparameters of the 

neural network model is based on experience and no automatic optimization algorithms are 

applied. 

In terms of practical implications, this study supports the development of artificial intelligence-

based methods for the early diagnosis of neurological diseases. In particular, it opens up new 

possibilities for modeling neural activity with EEG data. 

Future directions include the use of medical based Big Data, the integration of time-frequency 

analysis, and the application of the model to real-time EEG signals. It is also planned to develop 

extended models for other neurological diseases. The results show that during migraine attacks 

with aura, the negative membrane potentials of biological neurons in the aura phase, and the 

function that evaluates the recovery mechanism receiving a sufficiently small value, confirm that 

the patient is experiencing conditions such as fatigue, physical weakness, motor disorders and 

short-term speech and hearing limitations. 
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