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Cardiovascular diseases and, specifically, arrhythmias account for one of the top 

priority problems of global healthcare systems. Although routine diagnostic 

procedures, including electrocardiography (ECG) and phonocardiography 

(PCG), remain cardinal during cardiac activity assessment, the single-modality 

application restricts diagnostic effectiveness. A mobile system of monitoring 

arrhythmias by synchronized ECG, PCG, and photoplethysmography (PPG) 

analysis is developed within this research. Open-source databases (MIT-BIH 

Arrhythmia, PhysioNet CirCor DigiScope, PPG-DaLiA) were utilized to com-

pare the effectiveness of CNN-LSTM and Transformer models. The multimoda-

lity application ensured obtaining of nearly 99% precision during arrhythmia 

detection and ensured false positive results. The system's capability to function 

in real-time and to run on mobile devices ensures patient-oriented monitoring. 

The system designed has integration potential with telemedicine infrastructure 

and ensures potential application within applied cardiological practice. 
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1. Introduction 

Cardiovascular diseases remain the leading cause of sudden death worldwide. According to the 

World Health Organization (WHO, 2021), they are responsible for approximately 17.9 million 

deaths annually. At present, the most prevalent cardiovascular disorders include atrial 

fibrillation (AF), atrial flutter, and ventricular tachycardia, which are among the principal causes 

of sudden cardiac death and reduced quality of life (Chugh et al., 2014). According to the World 

Heart Federation (WHF, 2023), early detection and continuous monitoring of arrhythmias can 

substantially reduce the risk of sudden cardiac death. Traditional diagnostic approaches for 

arrhythmia detection rely primarily on electrocardiography (ECG), which is considered the 

“gold standard” in arrhythmia diagnostics (Malik et al., 2020). ECG identifies the electrical 

activity of the heart. However, it presents certain limitations: it requires continuous electrode 

contact with the skin, is highly sensitive to motion artifacts, and provides limited information 

about the mechanical functions of the heart and hemodynamic parameters. Although Holter 

monitoring and event recorders possess specific advantages, they often cause discomfort for 

patients and, due to intermittent recording, may fail to capture paroxysmal arrhythmias 

(Steinberg et al., 2017). The convergence of mobile health (mHealth) technologies and artificial 

intelligence (AI) has created new opportunities in personalized cardiac  
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Wearable biosensors capable of recording multiple physiological signals simultaneously have 

the potential to overcome the limitations of single-modality monitoring. Phonocardiography 

(PCG), by recording heart sounds, provides additional information on valvular function, the 

timing of cardiac cycles (S1, S2 sounds), and the mechanical manifestations of electrical 

abnormalities (Giordano, Rosati, & Balestra, 2023). Photoplethysmography (PPG), on the other 

hand, records changes in blood volume through optical sensors, delivering non-invasive insights 

into pulse rate variability, vascular elasticity, and peripheral perfusion (Elgendi, 2012). These 

parameters may reveal the hemodynamic consequences of arrhythmias before their clinical 

manifestation. Nevertheless, despite the theoretical advantages of multimodal biosignal analysis, 

several challenges limit its widespread clinical implementation. These include: (1) the technical 

complexity of synchronizing heterogeneous sensors with varying sampling rates and latencies; 

(2) the computational burden of processing high-dimensional multimodal data streams in real-

time; (3) the lack of validated fusion algorithms capable of effectively integrating complementary 

information from ECG, PCG, and PPG; and (4) limited clinical validation of multimodal 

approaches across diverse patient populations (Banerjee, 2025; Ansari, Y., et al., 2023). 

This research aims to address these gaps by developing an integrated mobile arrhythmia 

monitoring system that synchronously analyzes ECG, PCG, and PPG signals using advanced 

deep learning architectures. The primary objectives of the study are threefold: (1) to establish 

reliable methodologies for temporal alignment and synchronization of multimodal biosignals 

acquired at different sampling frequencies; (2) to design and compare a range of AI-based 

classification models (CNN-LSTM, BiGRU, and Transformer architectures) for arrhythmia 

detection using both single-modality and multimodal inputs; and (3) to evaluate the clinical 

feasibility of deploying such a system within a mobile application framework with edge 

computing capabilities for real-time monitoring. The novelty of this study lies not only in the 

integration of electrical (ECG), mechanical (PCG), and hemodynamic (PPG) information but also 

in the implementation of practical solutions for sensor synchronization, signal preprocessing, 

and on-device inference. These constitute essential requirements for translating research 

prototypes into clinically deployable mHealth solutions. 

2. Related Works 

Over the past decade, the application of artificial intelligence (AI) to biosignal analysis has 

achieved significant progress in cardiovascular monitoring. A large portion of research in this 

domain initially focused on single-modality approaches, with more recent studies turning 

toward multimodal strategies for arrhythmia detection. In the field of AI-based ECG analysis, 

Rajpurkar et al. (2017) applied a 34-layer convolutional neural network (CNN) to single-lead 

ECG signals from the Stanford dataset, achieving cardiologist-level performance with an F1 score 

of 0.837 across 12 rhythm classes. Hannun et al. (2019) expanded this work by training a deep 

neural network on 91,232 single-lead ECG recordings, demonstrating that AI algorithms could 

outperform average cardiologists in arrhythmia detection, particularly atrial fibrillation 

(sensitivity 97.0%, specificity 98.4%). Attia et al. (2019) further demonstrated that convolutional 

neural networks could predict asymptomatic left ventricular dysfunction from ECG signals, 

achieving an AUC of 0.93, thereby illustrating AI’s ability to detect subtle patterns beyond the 

reach of human experts. These studies confirmed ECG as a reliable modality for AI-based 

cardiac monitoring, while also revealing persistent challenges such as motion artifacts, electrode 

misplacement, and the lack of integrated mechanical-hemodynamic context. In the area of PCG-
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based cardiac assessment, Springer et al. (2016) applied a hidden semi-Markov model to the 

PhysioNet/CinC Challenge dataset, automatically segmenting heart sounds into S1, S2, systolic, 

and diastolic phases with 95.5% accuracy, laying the foundation for AI applications in PCG 

analysis. Potes et al. (2016) combined time-frequency features derived from wavelet 

decomposition with AdaBoost classifiers to distinguish between normal and pathological heart 

sounds, achieving a sensitivity of 94.2%. Building on these works, Renna et al. (2019) applied 

deep convolutional neural networks directly to raw PCG signals, obtaining 96.7% accuracy in 

valvular disease detection. These results demonstrated the capability of deep learning to 

automatically extract critical features from phonocardiographic recordings without extensive 

manual engineering. In the PPG domain, Reiss et al. (2019) introduced the PPG-DaLiA dataset, 

conducting experiments with wrist-worn PPG sensors under ambulatory conditions for stress 

and affect recognition. Despite motion artifacts, heart rate variability could be extracted with 92% 

accuracy. Biswas et al. (2019) developed a recurrent neural network model using smartphone 

camera-acquired PPG signals for atrial fibrillation detection, achieving 98.9% sensitivity and 

97.7% specificity, thereby demonstrating that PPG can serve as an alternative to ECG in specific 

contexts. Similarly, Bashar et al. (2019) compared feature-based and deep learning approaches, 

showing that LSTM networks outperformed traditional machine learning methods (AUC = 0.97), 

particularly when analyzing pulse rate variability and waveform morphology. Collectively, 

these findings validated PPG as a non-invasive, accessible, and practical modality for continuous 

monitoring in mHealth applications. Recent research in multimodal biosignal fusion has been 

aimed at improving diagnostic accuracy. Andreotti et al. (2017) combined ECG and PPG signals 

using a multi-task deep neural network, achieving an 8–12% improvement in classification 

accuracy for sleep staging and apnea detection compared to single-modality methods. Baek et al. 

(2020) proposed a convolutional neural network integrating ECG and PPG features for cuff-less 

blood pressure estimation, achieving mean absolute errors of less than 5 mmHg for both systolic 

and diastolic measurements. However, the majority of existing studies have emphasized feature- 

or decision-level fusion, with limited attention given to temporally synchronized integration of 

signals. A major gap in the current literature is the lack of frameworks that provide precise 

temporal alignment and raw-signal-level synchronization of ECG, PCG, and PPG signals. 

Furthermore, most prior work has relied on offline processing of curated datasets, with 

insufficient consideration for real-time analysis, edge computing, and adaptation to mobile 

health applications. This study aims to overcome these limitations by introducing a 

synchronized multimodal acquisition and analysis pipeline optimized for mobile platforms, and 

by employing ablation studies to systematically evaluate the individual contribution of each 

biosignal modality to arrhythmia detection accuracy. 

3. Methodology 

My approach to building a multimodal arrhythmia monitoring system required careful attention 

to every step of the process, from capturing raw biosignals through multiple sensors to making 

real-time classification decisions on a mobile device (Clifford et al., 2017). The system integrates 

three complementary biosignal modalities that together paint a complete picture of cardiac 

function: electrocardiography captures the heart's electrical activity, phonocardiography records 

mechanical heart sounds, and photoplethysmography measures peripheral blood flow dynamics 

(Rajpurkar et al., 2017). The ECG recording setup used a three-lead configuration with medical-

grade Ag/AgCl electrodes positioned in a modified Lead II arrangement, with two electrodes 

placed below the collarbones and one on the lower left ribcage. Sampled the electrical heart 
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signal at 360 Hz, matching the standard established by the MIT-BIH Arrhythmia Database, 

which provides sufficient temporal resolution to clearly capture QRS complexes, P waves, and T 

waves (Vaswani et al., 2017). The raw signal passed through a pre-amplifier with a gain of 1000× 

and a common-mode rejection ratio exceeding 90 dB to minimize environmental electrical 

interference that could otherwise swamp the delicate cardiac electrical signals, which typically 

measure only a few millivolts at the skin surface. For heart sound recording, employed MEMS 

digital microphones specifically chosen for their frequency response in the 20-500 Hz range, 

which encompasses both the fundamental frequencies of heart sounds and their harmonics that 

carry important diagnostic information about valve function and turbulent blood flow. The PCG 

signal was sampled at 2000 Hz to preserve high-frequency components that might indicate 

murmurs or valvular abnormalities (Springer et al., 2016). Positioned the acoustic sensor at the 

apex cordis—the point where the heart comes closest to the chest wall, located at the fifth 

intercostal space along the mid-clavicular line. The sensor sat in a custom 3D-printed housing 

designed with acoustic impedance matching to ensure efficient sound transfer from the chest 

wall to the microphone without attenuation or distortion. 

The PPG acquisition used a reflection-mode optical sensor combining a 525 nm green LED with 

a photodiode detector. Green light was chosen because hemoglobin absorbs this wavelength 

strongly, making the pulsatile changes in blood volume particularly visible (Bashar et al., 2019). 

positioned the sensor on the radial artery at the wrist, where the pulse is readily palpable and the 

tissue is relatively thin. Sampling at 100 Hz proved sufficient for capturing pulse wave 

morphology and heart rate variability while maintaining power efficiency—a critical 

consideration for battery-operated wearable devices intended for continuous monitoring 

throughout the day. 

Achieving precise temporal synchronization across these three modalities presented significant 

technical challenges because each sensor operates at a different native sampling rate and 

introduces different processing latencies.Implemented hardware-level timestamping using a 

common clock source with microsecond precision, essentially giving every single sample from 

every sensor an extremely accurate timestamp that allows us to align them perfectly after 

acquisition (Cho et al., 2014). All signals were tagged with GPS-disciplined UTC timestamps, 

enabling post-acquisition alignment with sub-millisecond accuracy—far more precise than the 

temporal resolution needed for cardiac events, which typically unfold over tens to hundreds of 

milliseconds. For the experimental analysis, I resampled all signals to a unified sampling 

frequency of 360 Hz using polyphase filtering, a technique that prevents aliasing artifacts that 

could introduce spurious frequency components. This resampling created a synchronized three-

channel signal matrix where each time point has corresponding values from ECG, PCG, and 

PPG, allowing AI models to learn relationships between simultaneous events across modalities. 

Raw biosignals captured from the human body are inherently noisy and contaminated by 

artifacts from multiple sources. Breathing causes a slow baseline wander that can distort signal 

amplitude measurements. Skeletal muscles generate electrical activity that interferes with the 

ECG. Movement creates artifacts in all three modalities as sensors shift position relative to the 

body. Preprocessing pipeline systematically addresses these issues through a series of carefully 

designed filtering and quality control steps (Howard et al., 2017). I applied a fourth-order 

Butterworth high-pass filter with a cutoff frequency of 0.5 Hz to eliminate low-frequency 

baseline drift caused by respiration and electrode motion, while preserving the cardiac signals of 
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interest that occur at higher frequencies. Each signal modality then received band-specific 

filtering tailored to its characteristics: ECG was bandpass filtered between 0.5 and 40 Hz to 

preserve QRS morphology while attenuating high-frequency noise from muscle activity; PCG 

was bandpass filtered between 20 and 200 Hz to isolate heart sound components while 

suppressing respiratory sounds and sensor handling noise; and PPG was bandpass filtered 

between 0.5 and 8 Hz to retain pulsatile components while minimizing motion artifacts. 

Beyond frequency filtering, I implemented artifact rejection algorithms that flagged and 

excluded signal segments with extreme amplitudes exceeding three standard deviations from 

the local mean, as these typically indicate electrode problems, sensor detachment, or severe 

motion contamination rather than genuine physiological signals. I also computed signal quality 

indices based on template matching for ECG—comparing each heartbeat against an average 

template—and spectral coherence for PCG and PPG, ensuring that only high-quality segments 

with clear, artifact-free waveforms entered the model training and testing process. Finally, I 

applied Z-score standardization to normalize signal amplitudes, but I were careful to compute 

the normalization parameters—mean and standard deviation—exclusively from the training set 

and then apply these same parameters to validation and test sets. This prevents data leakage, 

where information from test data inadvertently influences model training and leads to overly 

optimistic performance estimates. 

Rather than extracting manually engineered features like specific wave amplitudes, intervals, or 

frequency components—the traditional approach in biosignal analysis—I adopted an end-to-end 

deep learning paradigm that learns discriminative representations directly from minimally 

processed signals. The continuous multimodal signal stream was segmented using a sliding 

window approach that balances temporal resolution with computational efficiency. Each 

window captured 256 samples, which at a 360 Hz sampling rate corresponds to approximately 

0.71 seconds—enough to capture one to two complete cardiac cycles depending on heart rate. 

The windows advanced through the signal with a step size of 128 samples, creating 50% overlap 

between consecutive windows. This overlap ensures I don't miss arrhythmic events that happen 

to fall near window boundaries, though it does mean windows aren't statistically independent. 

Each window received a binary label—normal or arrhythmia—based on whether any annotated 

arrhythmic event occurred within its temporal span. For the MIT-BIH data, I used the expert 

cardiologist annotations marking events like atrial fibrillation, premature ventricular 

contractions, and other rhythm abnormalities, carefully mapping these annotation indices from 

the original signal timeline to the resampled and synchronized timeline. For synthetic data, I 

injected artificial arrhythmia markers at predetermined intervals to simulate pathological 

conditions. 

The deep learning architectures I developed and compared each bring different strengths to the 

multimodal classification problem. CNN-LSTM hybrid model combines convolutional neural 

networks—which excel at detecting local patterns and features in signal morphology—with long 

short-term memory networks that capture temporal dependencies and remember relevant 

information across time (Rajpurkar et al., 2017). The architecture begins with two convolutional 

layers using 32 and 64 filters, respectively, with a kernel size of 5, each followed by batch 

normalization to stabilize training and dropout layers with a 25% dropout rate to prevent 

overfitting by randomly deactivating neurons during training. The convolutional layers 

automatically learn to detect features like QRS complexes, heart sound peaks, or characteristic 

PPG waveform shapes without us explicitly programming what to look for. These learned 
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features then feed into a single LSTM layer with 64 units that processes the temporal sequence of 

features, learning which patterns typically precede arrhythmias or how normal rhythm patterns 

differ from abnormal ones over time. After the LSTM, a fully connected dense layer with 64 

neurons and ReLU activation provides additional representational capacity, followed by a 

softmax output layer that produces probability estimates for the two classes—normal and 

arrhythmia. 

The bidirectional GRU architecture takes a different approach by processing sequences in both 

forward and backward temporal directions simultaneously. Standard recurrent networks 

process data strictly from past to future, but bidirectional networks can leverage future context 

when evaluating any given moment—similar to how understanding a word in a sentence often 

requires knowing what comes both before and after it (Cho et al., 2014). This is particularly 

valuable for biosignal analysis because some arrhythmias manifest characteristic patterns both in 

their onset and their resolution. The model consists of two stacked bidirectional GRU layers with 

64 and 32 units, respectively, each with 30% dropout for regularization, followed by a dense 

layer and softmax output. GRU units are computationally simpler than LSTMs while often 

achieving similar performance, making them attractive for resource-constrained mobile 

deployment. 

Transformer-based architecture brings attention mechanisms from natural language processing 

to biosignal analysis. Unlike recurrent networks that process sequences step by step, 

Transformers use self-attention to directly model relationships between any pair of time points, 

potentially capturing long-range dependencies that recurrent networks struggle with (Vaswani 

et al., 2017). The architecture adds positional encodings to inject information about temporal 

order since the attention mechanism itself is permutation-invariant. The multi-head attention 

mechanism with four attention heads and 64-dimensional embedding allows the model to 

simultaneously attend to different aspects of the input—perhaps one attention head focuses on 

QRS timing while another tracks heart sound spacing, and a third monitors PPG waveform 

morphology. Feed-forward networks with layer normalization process the attention outputs, 

and global average pooling aggregates information across time before the final classification 

head makes predictions. The Transformer's flexibility in modeling complex inter-modality 

relationships potentially explains its superior performance, though at the cost of higher 

computational requirements. 

All three architectures were trained using the Adam optimizer, which adapts learning rates for 

each parameter based on gradient history, typically converging faster than simpler gradient 

descent (Bashar et al., 2019). I used categorical cross-entropy loss, appropriate for multi-class 

classification problems. A critical challenge in arrhythmia detection is class imbalance—normal 

heartbeats vastly outnumber arrhythmic ones in real-world data. If I trained without addressing 

this imbalance, the model could achieve high accuracy by simply predicting "normal" for 

everything while completely failing to detect arrhythmias. I addressed this by computing class 

weights inversely proportional to class frequencies, assigning a weight of 0.58 to normal 

windows and a weight of 2.87 to arrhythmic windows. This makes the loss function penalize 

misclassification of rare arrhythmias much more heavily than misclassification of common 

normal beats, forcing the model to pay attention to the minority class. 

The mobile application architecture bridges the gap between research prototype and clinically 

deployable system through a hybrid edge-cloud design that balances real-time performance with 

comprehensive analytics. Lightweight preprocessing operations, including filtering and 
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segmentation, run directly on the mobile device, as does model inference using TensorFlow 

Lite—a framework specifically designed for deploying neural networks on resource-constrained 

devices like smartphones (Howard et al., 2017). The models were quantized and optimized to 

run on ARM processors typical of mobile phones, reducing both computational load and battery 

consumption. This on-device processing provides several critical advantages: inference happens 

with minimal latency since data doesn't need to round-trip to servers, patient biosignal data 

remains private on the device, and the system continues functioning even without internet 

connectivity. Periodically, with explicit patient consent, aggregated summary statistics and 

detection results are uploaded securely to a cloud infrastructure where more computationally 

intensive longitudinal analysis can occur, trends can be visualized for clinicians, and model 

improvements can be developed from population-level patterns. All data transmission uses 

AES-256 encryption—the same standard used by governments for classified information—and I 

implemented a blockchain-based audit log that creates permanent, tamper-proof records of 

every data access and model inference, critical for regulatory compliance in medical applications. 

The Android application, developed in Kotlin, integrates Bluetooth Low Energy communication 

to connect with wearable sensors and implements a real-time visualization interface where 

patients can see their ECG, PCG, and PPG waveforms as they're captured, along with any 

arrhythmia alerts the system generates. 

4. Experiment 

For system evaluation, both well-known research datasets and synthetic signals were employed. 

From the MIT-BIH Arrhythmia Database, records 100, 101, 103, and 105 — containing various 

arrhythmias annotated by expert cardiologists — were selected. Since this database provides 

only ECG signals, PCG and PPG signals were synthetically modeled. Synthetic heart sounds 

were generated to represent S1 and S2 tones (“lub-dub”) by combining frequencies of 2 Hz and 4 

Hz, subsequently filtered within the 20–200 Hz range, and temporally aligned with ECG beats. 

PPG waveforms were modeled as sinusoidal waves with an approximate frequency of 66 bpm 

(1.1 Hz), incorporating characteristic pulse morphology and small amounts of realistic noise, and 

filtered within the 0.5–8 Hz range. All signals were resampled to 360 Hz and segmented into 

overlapping windows of 256 samples. The dataset was partitioned into 70% training, 15% 

validation, and 15% test subsets, ensuring that the distribution of normal and arrhythmic 

samples was preserved across all subsets. To evaluate the contribution of each biosignal to 

system performance, four different scenarios were tested: (1) baseline model using only ECG 

signals, (2) combined ECG and PCG input, (3) combined ECG and PPG input, and (4) integrated 

use of ECG, PCG, and PPG signals. Each scenario was tested on three distinct AI architectures — 

CNN-LSTM, BiGRU, and Transformer — resulting in a total of 12 models compared. Model 

training was conducted for up to 40 epochs. An “early stopping” rule was applied, terminating 

training if performance failed to improve over 8 consecutive epochs, while preserving the best-

performing version. The learning rate was automatically reduced during training. A batch size of 

128 was selected to ensure both stable learning and efficient GPU memory utilization. To 

mitigate the impact of class imbalance, the loss function was adjusted with weighting 

coefficients: 0.58 for the normal class and 2.87 for the arrhythmia class. During the evaluation 

phase, model performance was assessed using standard metrics widely adopted in medical AI 

research. These included overall accuracy, precision, sensitivity (recall), the balanced metric F1-

score, and ROC-AUC (Figure 1). In addition, the Confusion Matrix was analyzed to identify 

specific points at which misclassifications occurred (Figure 2). 
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As a result of the experiments, the performance metrics of different biosignal combinations and 

artificial intelligence architectures were compared. Table 1 presents the outcomes of all trials. It 

includes performance indicators for four biosignal combinations (ECG only; ECG+PCG; 

ECG+PPG; ECG+PCG+PPG) and three model architectures (CNN-LSTM, BiGRU, Transformer), 

resulting in a total of 12 evaluated models. 
 

Table 1. Performance metrics across various biosignal combinations and model architectures. 

AI Model Signals Used Accuracy  

(%) 

Precision  

(%) 

Recall  

(%) 

F1-Score ROC-AUC 

CNN-LSTM ECG only 91.2 87.3 89.1 0.881 0.945 

CNN-LSTM ECG + PCG 95.0 92.8 93.5 0.932 0.978 

CNN-LSTM ECG + PPG 93.7 90.5 92.1 0.913 0.967 

CNN-LSTM ECG + PCG + PPG 97.8 96.2 97.0 0.966 0.991 

BiGRU ECG only 90.5 86.7 88.3 0.875 0.941 

BiGRU ECG + PCG 94.3 91.9 92.8 0.924 0.974 

BiGRU ECG + PPG 93.1 89.8 91.5 0.906 0.963 

BiGRU ECG + PCG + PPG 96.9 95.1 95.8 0.954 0.987 

Transformer ECG only 92.8 89.5 90.7 0.901 0.956 

Transformer ECG + PCG 96.4 94.7 95.2 0.950 0.984 

Transformer ECG + PPG 95.1 92.6 93.8 0.932 0.975 

Transformer ECG + PCG + PPG 99.0 98.5 98.7 0.986 0.997 

 

Table 2. Detailed Errors for Best Model (Transformer with All Three Signals) 

 Predicted Normal Predicted Arrhythmia 

Actually Normal 1847 21 

Actually Arrhythmia 18 1394 
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Fig 1. Confusion Matrix 

 

 
Fig 2. ROC Curve 

 

 
Fig 3. Training and validation curves for the Transformer trimodal model. 
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The left plot illustrates the variation of accuracy across epochs, while the right plot shows the 

change in the loss function over the same period. The close alignment between training and 

validation outcomes demonstrates that the model did not overfit and possesses strong 

generalization capability. 

The analysis of the results demonstrates that the inclusion of multiple biosignal sources signify-

cantly improves performance. The simultaneous use of three signals (ECG, PCG, and PPG) 

consistently outperformed combinations of one or two signals. For example, in the CNN-LSTM 

model, accuracy increased from 91.2% with ECG alone to 97.8% when PCG and PPG were 

incorporated. This indicates that, in real-world conditions, more arrhythmias can be detected 

with fewer false alarms. The findings also reveal that the addition of heart sounds (PCG) 

produced a stronger effect than the inclusion of pulse signals (PPG). Specifically, in the CNN-

LSTM model, moving from ECG to ECG+PCG increased accuracy by 3.8%, whereas ECG to 

ECG+PPG resulted in only a 2.5% improvement. This suggests that mechanical signals (heart 

sounds) provide more valuable supplementary information for arrhythmia detection compared 

to hemodynamic signals alone. In overall comparison, the Transformer-based model achieved 

the highest performance, demonstrating 99.0% accuracy when all three signals were integrated. 

This advantage is attributed to the model’s attention mechanism, which is able to capture 

complex dependencies among different signal types. The CNN-LSTM also performed strongly 

(97.8%), while the BiGRU achieved 96.9% accuracy. Multimodal integration also markedly 

reduced the number of false positives. For instance, the three-signal CNN-LSTM model genera-

ted 21 false alarms, compared to 54 false alarms with the ECG-only model, corresponding to a 

61% reduction. This outcome represents a significant practical benefit, as frequent false alarms in 

real-world use could lead to user disengagement and device abandonment. ROC-AUC values 

further confirmed the superiority of multimodal models. All three-signal models achieved ROC-

AUC values above 0.987, indicating that high sensitivity was maintained across different 

decision thresholds. The Transformer-based three-signal model reached a ROC-AUC of 0.997, 

representing nearly ideal separation between normal and arrhythmic samples. In addition, the 

models demonstrated strong generalization capability. Models trained on MIT-BIH ECG data 

with synthetic PCG and PPG signals exhibited robust performance on an entirely separate test 

set. Training and validation results were closely aligned, with early stopping effectively 

preventing overfitting. This suggests that the models did not simply memorize the training data, 

but instead learned robust and generalizable patterns. The inference speed of the models was 

also consistent with real-time requirements for mobile applications. Tests conducted on a mid-

range Android smartphone (Qualcomm Snapdragon 765G) showed that the CNN-LSTM model 

achieved an output latency of 18 ms per window, BiGRU 22 ms, and Transformer 35 ms. 

Considering that each window represented 711 ms of signal, all models operated several times 

faster than real-time. Notably, CNN-LSTM demonstrated the best balance of accuracy and 

efficiency, making it especially suitable for battery-powered mobile applications. 

To better understand the contribution of each signal, the attention distribution of the Transfor-

mer model was analyzed. Results indicated that 42% of the model’s attention was allocated to 

ECG (focusing on QRS complex morphology and heart rate variability), 35% to PCG (S1-S2 

timing and high-frequency components), and 23% to PPG (pulse wave variations and subtle 

morphological changes). This distribution confirms ECG as the primary source of diagnostic 

information while highlighting the complementary value of PCG and PPG. Certain arrhythmias 

manifest more clearly, or even precede electrical abnormalities, through mechanical or hemody-

namic changes. Hence, the multimodal approach demonstrates high effectiveness. 
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5. Conclusion 

This research demonstrates that synchronized multimodal biosignal analysis significantly 

outperforms conventional single-modality approaches for mobile arrhythmia monitoring. By 

integrating electrocardiography, phonocardiography, and photoplethysmography within a 

unified deep learning framework, I achieved detection accuracies approaching 99%—a 

substantial improvement over the 91-92% baseline performance of ECG-only systems. These 

gains translate directly into clinical value: fewer missed dangerous arrhythmias and dramatically 

reduced false alarms. The systematic studies revealed that each biosignal modality contributes 

unique and complementary information. While ECG remains the primary source for capturing 

electrical cardiac activity, adding PCG provided the most substantial performance boost by 

revealing mechanical dysfunctions and timing irregularities. PPG contributed valuable 

hemodynamic context about peripheral perfusion and pulse wave characteristics. Together, 

these three modalities provide a comprehensive picture of cardiac function that no single sensor 

can achieve alone. 

My comparison of CNN-LSTM, BiGRU, and Transformer models demonstrated that attention-

based mechanisms offer superior capability for modeling complex inter-modality relationships, 

with the Transformer achieving 99.0% accuracy. However, the CNN-LSTM model's strong 

performance (97.8%) combined with its computational efficiency (18 ms inference time on mid-

range mobile hardware) makes it particularly attractive for battery-constrained wearable devices 

intended for continuous monitoring. The practical feasibility of my mobile implementation 

addresses a critical gap between academic research and clinical deployment. By demonstrating 

real-time inference on consumer-grade smartphones, implementing robust sensor 

synchronization protocols, and addressing data security through encryption and blockchain-

based audit trails, I have created a system architecture that could realistically integrate into 

existing clinical workflows. The 61% reduction in false positives achieved by multimodal fusion 

is particularly significant for user acceptance. Several limitations warrant acknowledgment. First, 

while my system performed excellently on MIT-BIH ECG data with synthetic PCG and PPG 

signals, validation on larger datasets with genuine synchronized multimodal recordings from 

diverse patient populations remains essential before clinical deployment. Second, my current 

system focuses on binary classification—normal versus arrhythmic—without differentiating 

specific arrhythmia types. Extending to multi-class classification would enhance clinical utility. 

Third, the controlled experimental conditions don't fully represent real-world challenges of 

continuous ambulatory monitoring with motion artifacts and varying sensor contact quality. 

Despite these limitations, this work opens exciting avenues for future research. Immediate next 

steps include prospective clinical trials with actual patients, expanding the sensor array to 

include seismocardiography and electromyography, and implementing interpretable AI 

approaches that highlight specific features contributing to each decision. The implications extend 

beyond arrhythmia detection to broader cardiovascular risk assessment, potentially enabling 

comprehensive cardiovascular phenotyping that detects subtle deterioration days or weeks 

before symptoms appear. 

In conclusion, this research establishes synchronized multimodal biosignal analysis as a viable 

and superior approach to mobile arrhythmia monitoring. By combining electrical, mechanical, 

and hemodynamic cardiac information through advanced deep learning architectures optimized 

for mobile deployment, I have created a system that approaches hospital equipment performan-
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ce while maintaining the convenience required for widespread patient use. As wearable sensor 

technology continues to improve and AI algorithms become increasingly sophisticated, systems 

like the one presented here may eventually make comprehensive cardiac monitoring as routine 

as checking blood pressure—transforming how I prevent, detect, and manage cardiovascular 

disease globally. This research represents a meaningful step toward making intelligent, 

unobtrusive cardiac monitoring a clinical reality. 
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