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Cardiovascular diseases and, specifically, arrhythmias account for one of the top
priority problems of global healthcare systems. Although routine diagnostic
procedures, including electrocardiography (ECG) and phonocardiography
(PCG), remain cardinal during cardiac activity assessment, the single-modality
application restricts diagnostic effectiveness. A mobile system of monitoring
arrhythmias by synchronized ECG, PCG, and photoplethysmography (PPG)
analysis is developed within this research. Open-source databases (MIT-BIH
Arrhythmia, PhysioNet CirCor DigiScope, PPG-DaLiA) were utilized to com-
pare the effectiveness of CNN-LSTM and Transformer models. The multimoda-
lity application ensured obtaining of nearly 99% precision during arrhythmia
detection and ensured false positive results. The system’s capability to function

in real-time and to run on mobile devices ensures patient-oriented monitoring.
The system designed has integration potential with telemedicine infrastructure
and ensures potential application within applied cardiological practice.

1. Introduction

Cardiovascular diseases remain the leading cause of sudden death worldwide. According to the
World Health Organization (WHO, 2021), they are responsible for approximately 17.9 million
deaths annually. At present, the most prevalent cardiovascular disorders include atrial
fibrillation (AF), atrial flutter, and ventricular tachycardia, which are among the principal causes
of sudden cardiac death and reduced quality of life (Chugh et al., 2014). According to the World
Heart Federation (WHEF, 2023), early detection and continuous monitoring of arrhythmias can
substantially reduce the risk of sudden cardiac death. Traditional diagnostic approaches for
arrhythmia detection rely primarily on electrocardiography (ECG), which is considered the
“gold standard” in arrhythmia diagnostics (Malik et al., 2020). ECG identifies the electrical
activity of the heart. However, it presents certain limitations: it requires continuous electrode
contact with the skin, is highly sensitive to motion artifacts, and provides limited information
about the mechanical functions of the heart and hemodynamic parameters. Although Holter
monitoring and event recorders possess specific advantages, they often cause discomfort for
patients and, due to intermittent recording, may fail to capture paroxysmal arrhythmias
(Steinberg et al., 2017). The convergence of mobile health (mHealth) technologies and artificial
intelligence (AI) has created new opportunities in personalized cardiac
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Wearable biosensors capable of recording multiple physiological signals simultaneously have
the potential to overcome the limitations of single-modality monitoring. Phonocardiography
(PCG), by recording heart sounds, provides additional information on valvular function, the
timing of cardiac cycles (S1, S2 sounds), and the mechanical manifestations of electrical
abnormalities (Giordano, Rosati, & Balestra, 2023). Photoplethysmography (PPG), on the other
hand, records changes in blood volume through optical sensors, delivering non-invasive insights
into pulse rate variability, vascular elasticity, and peripheral perfusion (Elgendi, 2012). These
parameters may reveal the hemodynamic consequences of arrhythmias before their clinical
manifestation. Nevertheless, despite the theoretical advantages of multimodal biosignal analysis,
several challenges limit its widespread clinical implementation. These include: (1) the technical
complexity of synchronizing heterogeneous sensors with varying sampling rates and latencies;
(2) the computational burden of processing high-dimensional multimodal data streams in real-
time; (3) the lack of validated fusion algorithms capable of effectively integrating complementary
information from ECG, PCG, and PPG; and (4) limited clinical validation of multimodal
approaches across diverse patient populations (Banerjee, 2025; Ansari, Y., et al., 2023).

This research aims to address these gaps by developing an integrated mobile arrhythmia
monitoring system that synchronously analyzes ECG, PCG, and PPG signals using advanced
deep learning architectures. The primary objectives of the study are threefold: (1) to establish
reliable methodologies for temporal alignment and synchronization of multimodal biosignals
acquired at different sampling frequencies; (2) to design and compare a range of Al-based
classification models (CNN-LSTM, BiGRU, and Transformer architectures) for arrhythmia
detection using both single-modality and multimodal inputs; and (3) to evaluate the clinical
feasibility of deploying such a system within a mobile application framework with edge
computing capabilities for real-time monitoring. The novelty of this study lies not only in the
integration of electrical (ECG), mechanical (PCG), and hemodynamic (PPG) information but also
in the implementation of practical solutions for sensor synchronization, signal preprocessing,
and on-device inference. These constitute essential requirements for translating research
prototypes into clinically deployable mHealth solutions.

2. Related Works

Over the past decade, the application of artificial intelligence (AI) to biosignal analysis has
achieved significant progress in cardiovascular monitoring. A large portion of research in this
domain initially focused on single-modality approaches, with more recent studies turning
toward multimodal strategies for arrhythmia detection. In the field of Al-based ECG analysis,
Rajpurkar et al. (2017) applied a 34-layer convolutional neural network (CNN) to single-lead
ECG signals from the Stanford dataset, achieving cardiologist-level performance with an F1 score
of 0.837 across 12 rhythm classes. Hannun et al. (2019) expanded this work by training a deep
neural network on 91,232 single-lead ECG recordings, demonstrating that Al algorithms could
outperform average cardiologists in arrhythmia detection, particularly atrial fibrillation
(sensitivity 97.0%, specificity 98.4%). Attia et al. (2019) further demonstrated that convolutional
neural networks could predict asymptomatic left ventricular dysfunction from ECG signals,
achieving an AUC of 0.93, thereby illustrating Al’s ability to detect subtle patterns beyond the
reach of human experts. These studies confirmed ECG as a reliable modality for Al-based
cardiac monitoring, while also revealing persistent challenges such as motion artifacts, electrode
misplacement, and the lack of integrated mechanical-hemodynamic context. In the area of PCG-
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based cardiac assessment, Springer et al. (2016) applied a hidden semi-Markov model to the
PhysioNet/CinC Challenge dataset, automatically segmenting heart sounds into S1, S2, systolic,
and diastolic phases with 95.5% accuracy, laying the foundation for Al applications in PCG
analysis. Potes et al. (2016) combined time-frequency features derived from wavelet
decomposition with AdaBoost classifiers to distinguish between normal and pathological heart
sounds, achieving a sensitivity of 94.2%. Building on these works, Renna et al. (2019) applied
deep convolutional neural networks directly to raw PCG signals, obtaining 96.7% accuracy in
valvular disease detection. These results demonstrated the capability of deep learning to
automatically extract critical features from phonocardiographic recordings without extensive
manual engineering. In the PPG domain, Reiss et al. (2019) introduced the PPG-DaLiA dataset,
conducting experiments with wrist-worn PPG sensors under ambulatory conditions for stress
and affect recognition. Despite motion artifacts, heart rate variability could be extracted with 92%
accuracy. Biswas et al. (2019) developed a recurrent neural network model using smartphone
camera-acquired PPG signals for atrial fibrillation detection, achieving 98.9% sensitivity and
97.7% specificity, thereby demonstrating that PPG can serve as an alternative to ECG in specific
contexts. Similarly, Bashar et al. (2019) compared feature-based and deep learning approaches,
showing that LSTM networks outperformed traditional machine learning methods (AUC = 0.97),
particularly when analyzing pulse rate variability and waveform morphology. Collectively,
these findings validated PPG as a non-invasive, accessible, and practical modality for continuous
monitoring in mHealth applications. Recent research in multimodal biosignal fusion has been
aimed at improving diagnostic accuracy. Andreotti et al. (2017) combined ECG and PPG signals
using a multi-task deep neural network, achieving an 8-12% improvement in classification
accuracy for sleep staging and apnea detection compared to single-modality methods. Baek et al.
(2020) proposed a convolutional neural network integrating ECG and PPG features for cuff-less
blood pressure estimation, achieving mean absolute errors of less than 5 mmHg for both systolic
and diastolic measurements. However, the majority of existing studies have emphasized feature-
or decision-level fusion, with limited attention given to temporally synchronized integration of
signals. A major gap in the current literature is the lack of frameworks that provide precise
temporal alighment and raw-signal-level synchronization of ECG, PCG, and PPG signals.
Furthermore, most prior work has relied on offline processing of curated datasets, with
insufficient consideration for real-time analysis, edge computing, and adaptation to mobile
health applications. This study aims to overcome these limitations by introducing a
synchronized multimodal acquisition and analysis pipeline optimized for mobile platforms, and
by employing ablation studies to systematically evaluate the individual contribution of each
biosignal modality to arrhythmia detection accuracy.

3. Methodology

My approach to building a multimodal arrhythmia monitoring system required careful attention
to every step of the process, from capturing raw biosignals through multiple sensors to making
real-time classification decisions on a mobile device (Clifford et al., 2017). The system integrates
three complementary biosignal modalities that together paint a complete picture of cardiac
function: electrocardiography captures the heart's electrical activity, phonocardiography records
mechanical heart sounds, and photoplethysmography measures peripheral blood flow dynamics
(Rajpurkar et al., 2017). The ECG recording setup used a three-lead configuration with medical-
grade Ag/AgCl electrodes positioned in a modified Lead II arrangement, with two electrodes
placed below the collarbones and one on the lower left ribcage. Sampled the electrical heart
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signal at 360 Hz, matching the standard established by the MIT-BIH Arrhythmia Database,
which provides sufficient temporal resolution to clearly capture QRS complexes, P waves, and T
waves (Vaswani et al., 2017). The raw signal passed through a pre-amplifier with a gain of 1000x
and a common-mode rejection ratio exceeding 90 dB to minimize environmental electrical
interference that could otherwise swamp the delicate cardiac electrical signals, which typically
measure only a few millivolts at the skin surface. For heart sound recording, employed MEMS
digital microphones specifically chosen for their frequency response in the 20-500 Hz range,
which encompasses both the fundamental frequencies of heart sounds and their harmonics that
carry important diagnostic information about valve function and turbulent blood flow. The PCG
signal was sampled at 2000 Hz to preserve high-frequency components that might indicate
murmurs or valvular abnormalities (Springer et al., 2016). Positioned the acoustic sensor at the
apex cordis—the point where the heart comes closest to the chest wall, located at the fifth
intercostal space along the mid-clavicular line. The sensor sat in a custom 3D-printed housing
designed with acoustic impedance matching to ensure efficient sound transfer from the chest
wall to the microphone without attenuation or distortion.

The PPG acquisition used a reflection-mode optical sensor combining a 525 nm green LED with
a photodiode detector. Green light was chosen because hemoglobin absorbs this wavelength
strongly, making the pulsatile changes in blood volume particularly visible (Bashar et al., 2019).
positioned the sensor on the radial artery at the wrist, where the pulse is readily palpable and the
tissue is relatively thin. Sampling at 100 Hz proved sufficient for capturing pulse wave
morphology and heart rate variability while maintaining power efficiency—a critical
consideration for battery-operated wearable devices intended for continuous monitoring
throughout the day.

Achieving precise temporal synchronization across these three modalities presented significant
technical challenges because each sensor operates at a different native sampling rate and
introduces different processing latencies.Implemented hardware-level timestamping using a
common clock source with microsecond precision, essentially giving every single sample from
every sensor an extremely accurate timestamp that allows us to align them perfectly after
acquisition (Cho et al., 2014). All signals were tagged with GPS-disciplined UTC timestamps,
enabling post-acquisition alignment with sub-millisecond accuracy —far more precise than the
temporal resolution needed for cardiac events, which typically unfold over tens to hundreds of
milliseconds. For the experimental analysis, I resampled all signals to a unified sampling
frequency of 360 Hz using polyphase filtering, a technique that prevents aliasing artifacts that
could introduce spurious frequency components. This resampling created a synchronized three-
channel signal matrix where each time point has corresponding values from ECG, PCG, and
PPG, allowing Al models to learn relationships between simultaneous events across modalities.

Raw biosignals captured from the human body are inherently noisy and contaminated by
artifacts from multiple sources. Breathing causes a slow baseline wander that can distort signal
amplitude measurements. Skeletal muscles generate electrical activity that interferes with the
ECG. Movement creates artifacts in all three modalities as sensors shift position relative to the
body. Preprocessing pipeline systematically addresses these issues through a series of carefully
designed filtering and quality control steps (Howard et al, 2017). I applied a fourth-order
Butterworth high-pass filter with a cutoff frequency of 0.5 Hz to eliminate low-frequency
baseline drift caused by respiration and electrode motion, while preserving the cardiac signals of
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interest that occur at higher frequencies. Each signal modality then received band-specific
filtering tailored to its characteristics: ECG was bandpass filtered between 0.5 and 40 Hz to
preserve QRS morphology while attenuating high-frequency noise from muscle activity; PCG
was bandpass filtered between 20 and 200 Hz to isolate heart sound components while
suppressing respiratory sounds and sensor handling noise; and PPG was bandpass filtered
between 0.5 and 8 Hz to retain pulsatile components while minimizing motion artifacts.

Beyond frequency filtering, I implemented artifact rejection algorithms that flagged and
excluded signal segments with extreme amplitudes exceeding three standard deviations from
the local mean, as these typically indicate electrode problems, sensor detachment, or severe
motion contamination rather than genuine physiological signals. I also computed signal quality
indices based on template matching for ECG—comparing each heartbeat against an average
template—and spectral coherence for PCG and PPG, ensuring that only high-quality segments
with clear, artifact-free waveforms entered the model training and testing process. Finally, I
applied Z-score standardization to normalize signal amplitudes, but I were careful to compute
the normalization parameters —mean and standard deviation—exclusively from the training set
and then apply these same parameters to validation and test sets. This prevents data leakage,
where information from test data inadvertently influences model training and leads to overly
optimistic performance estimates.

Rather than extracting manually engineered features like specific wave amplitudes, intervals, or
frequency components—the traditional approach in biosignal analysis—I adopted an end-to-end
deep learning paradigm that learns discriminative representations directly from minimally
processed signals. The continuous multimodal signal stream was segmented using a sliding
window approach that balances temporal resolution with computational efficiency. Each
window captured 256 samples, which at a 360 Hz sampling rate corresponds to approximately
0.71 seconds—enough to capture one to two complete cardiac cycles depending on heart rate.
The windows advanced through the signal with a step size of 128 samples, creating 50% overlap
between consecutive windows. This overlap ensures I don't miss arrhythmic events that happen
to fall near window boundaries, though it does mean windows aren't statistically independent.
Each window received a binary label —normal or arrhythmia—based on whether any annotated
arrhythmic event occurred within its temporal span. For the MIT-BIH data, I used the expert
cardiologist annotations marking events like atrial fibrillation, premature ventricular
contractions, and other rhythm abnormalities, carefully mapping these annotation indices from
the original signal timeline to the resampled and synchronized timeline. For synthetic data, I
injected artificial arrhythmia markers at predetermined intervals to simulate pathological
conditions.

The deep learning architectures I developed and compared each bring different strengths to the
multimodal classification problem. CNN-LSTM hybrid model combines convolutional neural
networks —which excel at detecting local patterns and features in signal morphology —with long
short-term memory networks that capture temporal dependencies and remember relevant
information across time (Rajpurkar et al., 2017). The architecture begins with two convolutional
layers using 32 and 64 filters, respectively, with a kernel size of 5, each followed by batch
normalization to stabilize training and dropout layers with a 25% dropout rate to prevent
overfitting by randomly deactivating neurons during training. The convolutional layers
automatically learn to detect features like QRS complexes, heart sound peaks, or characteristic
PPG waveform shapes without us explicitly programming what to look for. These learned
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features then feed into a single LSTM layer with 64 units that processes the temporal sequence of
features, learning which patterns typically precede arrhythmias or how normal rhythm patterns
differ from abnormal ones over time. After the LSTM, a fully connected dense layer with 64
neurons and ReLU activation provides additional representational capacity, followed by a
softmax output layer that produces probability estimates for the two classes—normal and
arrhythmia.

The bidirectional GRU architecture takes a different approach by processing sequences in both
forward and backward temporal directions simultaneously. Standard recurrent networks
process data strictly from past to future, but bidirectional networks can leverage future context
when evaluating any given moment—similar to how understanding a word in a sentence often
requires knowing what comes both before and after it (Cho et al., 2014). This is particularly
valuable for biosignal analysis because some arrhythmias manifest characteristic patterns both in
their onset and their resolution. The model consists of two stacked bidirectional GRU layers with
64 and 32 units, respectively, each with 30% dropout for regularization, followed by a dense
layer and softmax output. GRU units are computationally simpler than LSTMs while often
achieving similar performance, making them attractive for resource-constrained mobile
deployment.

Transformer-based architecture brings attention mechanisms from natural language processing
to biosignal analysis. Unlike recurrent networks that process sequences step by step,
Transformers use self-attention to directly model relationships between any pair of time points,
potentially capturing long-range dependencies that recurrent networks struggle with (Vaswani
et al.,, 2017). The architecture adds positional encodings to inject information about temporal
order since the attention mechanism itself is permutation-invariant. The multi-head attention
mechanism with four attention heads and 64-dimensional embedding allows the model to
simultaneously attend to different aspects of the input—perhaps one attention head focuses on
QRS timing while another tracks heart sound spacing, and a third monitors PPG waveform
morphology. Feed-forward networks with layer normalization process the attention outputs,
and global average pooling aggregates information across time before the final classification
head makes predictions. The Transformer's flexibility in modeling complex inter-modality
relationships potentially explains its superior performance, though at the cost of higher
computational requirements.

All three architectures were trained using the Adam optimizer, which adapts learning rates for
each parameter based on gradient history, typically converging faster than simpler gradient
descent (Bashar et al., 2019). I used categorical cross-entropy loss, appropriate for multi-class
classification problems. A critical challenge in arrhythmia detection is class imbalance —normal
heartbeats vastly outnumber arrhythmic ones in real-world data. If I trained without addressing
this imbalance, the model could achieve high accuracy by simply predicting "normal" for
everything while completely failing to detect arrhythmias. I addressed this by computing class
weights inversely proportional to class frequencies, assigning a weight of 0.58 to normal
windows and a weight of 2.87 to arrhythmic windows. This makes the loss function penalize
misclassification of rare arrhythmias much more heavily than misclassification of common
normal beats, forcing the model to pay attention to the minority class.

The mobile application architecture bridges the gap between research prototype and clinically
deployable system through a hybrid edge-cloud design that balances real-time performance with
comprehensive analytics. Lightweight preprocessing operations, including filtering and
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segmentation, run directly on the mobile device, as does model inference using TensorFlow
Lite—a framework specifically designed for deploying neural networks on resource-constrained
devices like smartphones (Howard et al.,, 2017). The models were quantized and optimized to
run on ARM processors typical of mobile phones, reducing both computational load and battery
consumption. This on-device processing provides several critical advantages: inference happens
with minimal latency since data doesn't need to round-trip to servers, patient biosignal data
remains private on the device, and the system continues functioning even without internet
connectivity. Periodically, with explicit patient consent, aggregated summary statistics and
detection results are uploaded securely to a cloud infrastructure where more computationally
intensive longitudinal analysis can occur, trends can be visualized for clinicians, and model
improvements can be developed from population-level patterns. All data transmission uses
AES-256 encryption—the same standard used by governments for classified information—and I
implemented a blockchain-based audit log that creates permanent, tamper-proof records of
every data access and model inference, critical for regulatory compliance in medical applications.
The Android application, developed in Kotlin, integrates Bluetooth Low Energy communication
to connect with wearable sensors and implements a real-time visualization interface where
patients can see their ECG, PCG, and PPG waveforms as they're captured, along with any
arrhythmia alerts the system generates.

4. Experiment

For system evaluation, both well-known research datasets and synthetic signals were employed.
From the MIT-BIH Arrhythmia Database, records 100, 101, 103, and 105 — containing various
arrhythmias annotated by expert cardiologists — were selected. Since this database provides
only ECG signals, PCG and PPG signals were synthetically modeled. Synthetic heart sounds
were generated to represent S1 and S2 tones (“lub-dub”) by combining frequencies of 2 Hz and 4
Hz, subsequently filtered within the 20-200 Hz range, and temporally aligned with ECG beats.
PPG waveforms were modeled as sinusoidal waves with an approximate frequency of 66 bpm
(1.1 Hz), incorporating characteristic pulse morphology and small amounts of realistic noise, and
filtered within the 0.5-8 Hz range. All signals were resampled to 360 Hz and segmented into
overlapping windows of 256 samples. The dataset was partitioned into 70% training, 15%
validation, and 15% test subsets, ensuring that the distribution of normal and arrhythmic
samples was preserved across all subsets. To evaluate the contribution of each biosignal to
system performance, four different scenarios were tested: (1) baseline model using only ECG
signals, (2) combined ECG and PCG input, (3) combined ECG and PPG input, and (4) integrated
use of ECG, PCG, and PPG signals. Each scenario was tested on three distinct Al architectures —
CNN-LSTM, BiGRU, and Transformer — resulting in a total of 12 models compared. Model
training was conducted for up to 40 epochs. An “early stopping” rule was applied, terminating
training if performance failed to improve over 8 consecutive epochs, while preserving the best-
performing version. The learning rate was automatically reduced during training. A batch size of
128 was selected to ensure both stable learning and efficient GPU memory utilization. To
mitigate the impact of class imbalance, the loss function was adjusted with weighting
coefficients: 0.58 for the normal class and 2.87 for the arrhythmia class. During the evaluation
phase, model performance was assessed using standard metrics widely adopted in medical Al
research. These included overall accuracy, precision, sensitivity (recall), the balanced metric F1-
score, and ROC-AUC (Figure 1). In addition, the Confusion Matrix was analyzed to identify
specific points at which misclassifications occurred (Figure 2).
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As a result of the experiments, the performance metrics of different biosignal combinations and

artificial intelligence architectures were compared. Table 1 presents the outcomes of all trials. It

includes performance indicators for four biosignal combinations (ECG only; ECG+PCG;
ECG+PPG; ECG+PCG+PPG) and three model architectures (CNN-LSTM, BiGRU, Transformer),
resulting in a total of 12 evaluated models.

Table 1. Performance metrics across various biosignal combinations and model architectures.

AI Model Signals Used Accuracy Precision Recall F1-Score | ROC-AUC
(%) (%) (%)
CNN-LSTM ECG only 91.2 87.3 89.1 0.881 0.945
CNN-LSTM ECG+PCG 95.0 92.8 93.5 0.932 0.978
CNN-LSTM ECG +PPG 93.7 90.5 92.1 0913 0.967
CNN-LSTM | ECG +PCG +PPG 97.8 96.2 97.0 0.966 0.991
BiGRU ECG only 90.5 86.7 88.3 0.875 0.941
BiGRU ECG+PCG 94.3 91.9 92.8 0.924 0.974
BiGRU ECG +PPG 93.1 89.8 91.5 0.906 0.963
BiGRU ECG +PCG +PPG 96.9 95.1 95.8 0.954 0.987
Transformer ECG only 92.8 89.5 90.7 0.901 0.956
Transformer ECG+PCG 96.4 94.7 95.2 0.950 0.984
Transformer ECG +PPG 95.1 92.6 93.8 0.932 0.975
Transformer | ECG +PCG +PPG 99.0 98.5 98.7 0.986 0.997

Table 2. Detailed Errors for Best Model (Transformer with All Three Signals)

Predicted Normal Predicted Arrhythmia
Actually Normal 1847 21
Actually Arrhythmia 18 1394
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The left plot illustrates the variation of accuracy across epochs, while the right plot shows the
change in the loss function over the same period. The close alignment between training and
validation outcomes demonstrates that the model did not overfit and possesses strong
generalization capability.

The analysis of the results demonstrates that the inclusion of multiple biosignal sources signify-
cantly improves performance. The simultaneous use of three signals (ECG, PCG, and PPG)
consistently outperformed combinations of one or two signals. For example, in the CNN-LSTM
model, accuracy increased from 91.2% with ECG alone to 97.8% when PCG and PPG were
incorporated. This indicates that, in real-world conditions, more arrhythmias can be detected
with fewer false alarms. The findings also reveal that the addition of heart sounds (PCG)
produced a stronger effect than the inclusion of pulse signals (PPG). Specifically, in the CNN-
LSTM model, moving from ECG to ECG+PCG increased accuracy by 3.8%, whereas ECG to
ECG+PPG resulted in only a 2.5% improvement. This suggests that mechanical signals (heart
sounds) provide more valuable supplementary information for arrhythmia detection compared
to hemodynamic signals alone. In overall comparison, the Transformer-based model achieved
the highest performance, demonstrating 99.0% accuracy when all three signals were integrated.
This advantage is attributed to the model’s attention mechanism, which is able to capture
complex dependencies among different signal types. The CNN-LSTM also performed strongly
(97.8%), while the BiGRU achieved 96.9% accuracy. Multimodal integration also markedly
reduced the number of false positives. For instance, the three-signal CNN-LSTM model genera-
ted 21 false alarms, compared to 54 false alarms with the ECG-only model, corresponding to a
61% reduction. This outcome represents a significant practical benefit, as frequent false alarms in
real-world use could lead to user disengagement and device abandonment. ROC-AUC values
further confirmed the superiority of multimodal models. All three-signal models achieved ROC-
AUC values above 0.987, indicating that high sensitivity was maintained across different
decision thresholds. The Transformer-based three-signal model reached a ROC-AUC of 0.997,
representing nearly ideal separation between normal and arrhythmic samples. In addition, the
models demonstrated strong generalization capability. Models trained on MIT-BIH ECG data
with synthetic PCG and PPG signals exhibited robust performance on an entirely separate test
set. Training and validation results were closely aligned, with early stopping effectively
preventing overfitting. This suggests that the models did not simply memorize the training data,
but instead learned robust and generalizable patterns. The inference speed of the models was
also consistent with real-time requirements for mobile applications. Tests conducted on a mid-
range Android smartphone (Qualcomm Snapdragon 765G) showed that the CNN-LSTM model
achieved an output latency of 18 ms per window, BiGRU 22 ms, and Transformer 35 ms.
Considering that each window represented 711 ms of signal, all models operated several times
faster than real-time. Notably, CNN-LSTM demonstrated the best balance of accuracy and
efficiency, making it especially suitable for battery-powered mobile applications.

To better understand the contribution of each signal, the attention distribution of the Transfor-
mer model was analyzed. Results indicated that 42% of the model’s attention was allocated to
ECG (focusing on QRS complex morphology and heart rate variability), 35% to PCG (51-52
timing and high-frequency components), and 23% to PPG (pulse wave variations and subtle
morphological changes). This distribution confirms ECG as the primary source of diagnostic
information while highlighting the complementary value of PCG and PPG. Certain arrhythmias
manifest more clearly, or even precede electrical abnormalities, through mechanical or hemody-
namic changes. Hence, the multimodal approach demonstrates high effectiveness.
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5. Conclusion

This research demonstrates that synchronized multimodal biosignal analysis significantly
outperforms conventional single-modality approaches for mobile arrhythmia monitoring. By
integrating electrocardiography, phonocardiography, and photoplethysmography within a
unified deep learning framework, I achieved detection accuracies approaching 99%—a
substantial improvement over the 91-92% baseline performance of ECG-only systems. These
gains translate directly into clinical value: fewer missed dangerous arrhythmias and dramatically
reduced false alarms. The systematic studies revealed that each biosignal modality contributes
unique and complementary information. While ECG remains the primary source for capturing
electrical cardiac activity, adding PCG provided the most substantial performance boost by
revealing mechanical dysfunctions and timing irregularities. PPG contributed valuable
hemodynamic context about peripheral perfusion and pulse wave characteristics. Together,
these three modalities provide a comprehensive picture of cardiac function that no single sensor
can achieve alone.

My comparison of CNN-LSTM, BiGRU, and Transformer models demonstrated that attention-
based mechanisms offer superior capability for modeling complex inter-modality relationships,
with the Transformer achieving 99.0% accuracy. However, the CNN-LSTM model's strong
performance (97.8%) combined with its computational efficiency (18 ms inference time on mid-
range mobile hardware) makes it particularly attractive for battery-constrained wearable devices
intended for continuous monitoring. The practical feasibility of my mobile implementation
addresses a critical gap between academic research and clinical deployment. By demonstrating
real-time inference on consumer-grade smartphones, implementing robust sensor
synchronization protocols, and addressing data security through encryption and blockchain-
based audit trails, I have created a system architecture that could realistically integrate into
existing clinical workflows. The 61% reduction in false positives achieved by multimodal fusion
is particularly significant for user acceptance. Several limitations warrant acknowledgment. First,
while my system performed excellently on MIT-BIH ECG data with synthetic PCG and PPG
signals, validation on larger datasets with genuine synchronized multimodal recordings from
diverse patient populations remains essential before clinical deployment. Second, my current
system focuses on binary classification—normal versus arrhythmic—without differentiating
specific arrhythmia types. Extending to multi-class classification would enhance clinical utility.
Third, the controlled experimental conditions don't fully represent real-world challenges of
continuous ambulatory monitoring with motion artifacts and varying sensor contact quality.

Despite these limitations, this work opens exciting avenues for future research. Immediate next
steps include prospective clinical trials with actual patients, expanding the sensor array to
include seismocardiography and electromyography, and implementing interpretable Al
approaches that highlight specific features contributing to each decision. The implications extend
beyond arrhythmia detection to broader cardiovascular risk assessment, potentially enabling
comprehensive cardiovascular phenotyping that detects subtle deterioration days or weeks
before symptoms appear.

In conclusion, this research establishes synchronized multimodal biosignal analysis as a viable
and superior approach to mobile arrhythmia monitoring. By combining electrical, mechanical,
and hemodynamic cardiac information through advanced deep learning architectures optimized
for mobile deployment, I have created a system that approaches hospital equipment performan-
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ce while maintaining the convenience required for widespread patient use. As wearable sensor
technology continues to improve and Al algorithms become increasingly sophisticated, systems
like the one presented here may eventually make comprehensive cardiac monitoring as routine
as checking blood pressure—transforming how I prevent, detect, and manage cardiovascular
disease globally. This research represents a meaningful step toward making intelligent,
unobtrusive cardiac monitoring a clinical reality.
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