Journal of
Baku

Engineering
University

Volume 9 MECHANICAL
Number 2 AND INDUSTRIAL
2025 ENGINEERING

Journal is published twice a year
Number-1. June, Number-2. December

ISSN 2521-6376

. An International Journal

http://journal.beu.edu.az




Editor-in-chief
Asif Quliyev

Co - Editor

Mursal Nasirov

Editorial advisory board

Amrulla Agamaliyev (Baku State University, Azerbaijan) Heydar Imanov (Sankt-Peterburq, Rusiya, President of the Innovative
Abdullah Sofiyev (Istanbul Ticaret University, Turkey) Scientific and Educational Consortium ”Smolny University”, President of
Afar Alifov (Baku Engineering University, Azerbaijan) LLC "Holding Company Electroceramics”)

Ahmed Malikov (Azerbaijan State Agricultural University, Azerbaijan) Ibrahim Habibov (Azerbaijan State Oil and Industry University, Azerbaijan)
Ahmed Mammadov (Hydrolog LLC, Azerbaijan) Iftikhar Chalabi (Azerbaijan Technical University, Azerbaijan)

Alexey Vladimirovich Markovets (St. Petersburg State University of Mahir Bashirov (Baku Engineering University, Azerbaijan)

Industrial Technologies and Design, Rusiya) Manafeddin Namazov (Baku Engineering University, Azerbaijan)

Al Sliyev(Baku State University, Azerbaijan) Mazahir Isayev (AR ETN, Institute of Management Systems, Azerbaijan)
Ali Riza Motorcu (Canakkale Onsekiz Mart University, Turkey) Mukhlis Hajryev (Azerbaijan University of Architecture and Construction,
Azer Ahmedov (Baku Engineering University, Azerbaijan) Azerbaijan)

Aziz Talibov (Azerbaijan National Defense University, Azerbaijan) Mustafa Mustafayev (Azerbaijan National Aviation Academy, Azerbaijan)
Bakhtiyar Namazov (Baku Engineering University, Azerbaijan) Naghdali Choupani (Gebze Teknik University, Turkiye)

Elchin Gurbanov (Baku Engineering University, Azerbaijan) Osman Mirzeyev (Baku Engineering University, Azerbaijan)

Ertugrul Durak (Turkey, Suleyman Demirel University) Ramiz Isgandarov (Azerbaijan University of Architecture and Construction,
Fuad Valiyev (Baku Higher Oil School, Azerbaijan) Azerbaijan)

Gasim Mammedov (Azerbaijan State Oil and Industry University, Song Ki Il (Inha University, Sourth Korea)

Azerbaijan) Vugar Mustafayev (Mingachevir State University, Azerbaijan)

Executive Editors
Shafag Alizade

Design
Ilham Aliyev

Contact address

Journal of Baku Engineering University
AZ0102, Khirdalan city, Hasan Aliyev str. 120, Absheron, Baku, Azerbaijan

Tel: 00 994 12 - 349 99 66/78  Fax: 00 994 12 349-99-90/91

e-mail: journal@beu.edu.az
web: http://journal.beu.edu.az
facebook: Journal Of Baku Engineering University

Copyright © Baku Engineering University

ISSN 2521-6376



ISSN 2521-6376

5 [BMU

Journal of

Baku Engineering
University

MECHANICAL AND
INDUSTRIAL ENGINEERING

Baku - AZERBAIJAN



Journal of Baku Engineering University
MECHANICAL AND INDUSTRIAL ENGINEERING

2025. Volume 9, Number 2

CONTENTS

EXPERIMENTAL STUDY OF THE TENSION-DEFORMATION
STATE OF THE TIGHTENING COMPONENT

Osman Mirzayev, Huseyn Mirzayev, Vurgun Gahramanov

75

THE STATIC ANALYSIS OF CYLINDRICAL SHELLS
MADE OF COMPOSITE MATERIAL

Natig Rzayev, Mahir Bashirov, Nofal Nabiyev

83

ANALYSIS OF MIGRAINE AURA BASED ON EEG TESTS
USING ARTIFICIAL INTELLIGENCE METHODS

Javid Abbasli

90

MOBILE ARRHYTHMIA MONITORING SYSTEM BASED ON MULTIMODAL
BIOSIGNAL ANALYSIS: SYNCHRONIZATION OF ECG, PCG, AND PPG

Sevinj Aliyeva

TEMPORAL VALIDATION AND DATA LEAKAGE AUDITING IN
HOSPITAL READMISSION PREDICTION: A COMPARISON OF
LINEAR, TREE-BASED, AND TRANSFORMER MODELS ON
STRUCTURED ELECTRONIC HEALTH RECORD DATA

Khalid Nazarov

METHODS FOR INCREASING WEAR RESISTANCE
AND CONTACT ENDURANCE OF GEARS

Balakhan Aliyev, Mursal Nasirov, Sadig Aliyev

ELECTRONIC TREATMENT OF COMPLEX STRUCTURES
IN A TORCH VOLUMETRIC ELECTRIC DISCHARGE

Elchin Gurbanov

EFFECT OF OIL ON THE HEAT TRANSFER OF MIXED
REFRIGERANT BOILING IN EVAPORATOR TUBES

Akif Bakhshiev, Asif Guliyev, N. A. Bakhshiev

MATHEMATICAL MODELING AND SIMULATION OF PROCESSES AFFECTING THE
CORROSION KINETICS IN OIL PIPELINES ON THE ABSHERON PENINSULA

Nuriyya Abdullayeva, Yegana Abdulazimova, Murad Mammadzada

MODELING THE DEPENDENCE OF ARC OVERVOLTAGE ON
GROUND FAULT RESISTANCE AND GROUND FAULT ANGLE

N.I Orujov, H.B. Guliyev, S.]. Alimammadova

103

116

128

137

144

149

157



JOURNAL OF BAKU ENGINEERING UNIVERSITY- MECHANICAL AND INDUSTRIAL ENGINEERING

2025. Volume 9, Number 2 Pages 75-82

UDC:624.042.7
DOI: https://doi.org/10.30546/09085.2025.02.308
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Osman MIRZAYEV?", Huseyn MIRZAYEV?, Vurgun GAHRAMANOV!
'Baku Engineering university, Khirdalan, Azerbaydjan
Karabakh university, Khankendi, Azerbaydjan

ARTICLE INFO ABSTRACT

Article history Gas lift equipment has a special place in oil extraction. This method has an
Received:2025-07-04 important place among mechanized methods. This method is used to increase the
Received in revised form:2025-07-17 longevity of the wells, and at the same time, when the productivity of the wells
Accepted:2025-10-04 decreases, to increase the pressure at the bottom of the well by supplying gas to
Available online the space behind the well, to raise oil to the surface.

Keywords: Gas lift valves are one of the main components of the equipment complex used in
Oil field equipment; wells using the gas lift method. Depending on the characteristics of the wells, it
qas lift valves; is required to meet complex requirements from the gas lift valves, among which
deformation; the provision of tightening is one of the important problems. In order to ensure
compression; effective tightening in gas lift valves, it is of great importance to choose the
tightening. construction, dimensions of tightening elements, as well as the criteria of

tightening correctly.

JEL Classification: From this point of view, the solution of scientific-practical problems related to
TA350, TA405, QA808, T840 the design and calculation methodology of tighteners that can create reliable

tightening in gas lift valves can be considered as one of the actual problems of
production and exploitation of modern oil field equipment.

1. Introduction

The study of the tension-deformation state is one of the important problems in providing reliable
hermeticity at high pressures in the gas lift equipment's tightening component. Theoretical
studies lay the foundation for solving of this problem by accepting certain approximations, but
in order to prove the theoretical results, there is a need to accept the results of experimental
research.

A complicated tension-deformation state is created in the tightening component between the
tightening elements, as well as in their touch with the contact surface (body).

At this stage of the research works, the tension-deformation state was studied by an
experimental method. For this purpose, the following have been determined - variable pressure

AP acting on the head surface of the tightener;
- axial force distributed on the tightening contact surface — Qt,
- the total tighting force applied to the tightening component.

The following approximations were accepted when solving the problem:

75



Osman Mirzayev, Huseyn Mirzayev, Vurgun Gahramanov

- the height of the tightened cylinder is the same;

- local radial and axial loads are equally distributed on the tightening surface. In this case, the
axial load is replaced by its equivalent static tangential force.

*Corresponding author.
E-mail addresses: omirzayev@beu.edu.az (Mirzayev Osman Hasan).

2. PROBLEM STATEMENT

2

Fig. 11.1. General view of the gas lift well:

1- fountain armature, 2- well chamber, 3- punched fastener, 4 - gas lift valve, 5- packer, 6- intake valve, 7- nipple

Experiments were carried out on gas lift valves with both existing and offered tightening
components. Constructions of tightening components are shown in Fig. 2 a and b, respectively.

The tightening component of the offered gas lift valve differs from the existing structure in that,
in order to reduce relaxation tensions in the rubber cuffs, lead rings are placed in the sockets of
the tightening cuffs [3].

76



Experimental Study of the Tension-Deformation State of the Tightening Component
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Fig. 2 a. An existing tightening component

Fig. 2 b. A tightening component of the new construction

1-a cover, 2 and 3 —rubber cuffs, 4 and 5 —lead rings, 6 — a silphon body

It is known that the tightening component of gas lift valves consists of two sets of oppositely
directed tightening elements with a conical profile. For this reason, when the tighteners are
placed in the chamber (cylinder) of the gas lift valve, loading of tightening has a great role.

Table 1 shows the location state and the number of the tighteners.

Table 1. The location state of the tighteners while tightening

No. of The location state of the tighteners involved in tightening The number of the tighteners

experiments involved in the contact
1 The I set of the tightening elements meets the contact surface 3
2 The middle surface of the tightening elements is in contact 2
3 The I set and the II set of the tighteners are in contact 6

The radial deformation diagram of the displacement is given in figure 5.5. It is seen from the

figure that the dependence % of the displacement in the tighteners on dimensionless relative
2

axial coordinate varies with the exponential law. From this one can conclude that the radial
displacement is not equally distributed on the axial height in the set of tighteners.
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Fig. 3. The radial deformation of the displacement in the tightener.
The change diagram of pressure-dependent tensions in the tighteners is given in figure 4 and the
change diagram of the force tangent to the contact line in them is given in figure 5.
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Fig. 4. The change diagram of pressure-dependent tensions in the tighteners with D=32 mm:

1-%2 (r=r1);2-%2 (r=r1); 3- %2 (r=r2)
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Fig. 5. The change diagram of the force tangent to the tightening contact surface
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The dependence of the axial tension on dimensionless relative axial coordinates is shown in

figure 5.8.
Oz 6
P
5
a
L1
3 -\
2 N
X \\
(o]
“0.4 /K/
2
-0,8 7
-1,2 z

0,12 0,2 0,3 0,4 0,5

2
Fig. 6. The dependence of the axial tension on axial coordinate:

ly — the upper (I) set, la — the lower (II) set of tighteners.

3. PROBLEM SOLUTION

The II stage of the experiments is devoted to the study of the tension-deformation state created in
the tighteners with a new shape due to tighting force and pressure.

In the tests, breaking the hermeticity by providing the stepwise increase of the tension on the
contact surfaces and the increase of the pressure between 10-50 MPa, as well as self-tightening
were performed. According to each step of tension or pressure, the tension and deformations on
the inner and outer contact surfaces of the tightening element were measured.

The results of the experiments for the newly offered tighteners (with outer diameters ¢29, ¢32,
$40) are given in figure 8-14.

O
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2
5,0 N

e

1
4,0 \
30 /
1

2,0 /J o]
o

1,0

4p

05 10 15 20 25 30 35 40 E

Fig. 7. The change diagram of the axial tension in the new-shaped tighteners:

1-D=29 mm; 2-D=32 mm; 3-D=40 mm
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Fig. 8. The change diagram of the tangential tension in the new-shaped tighteners:
1-D=29 mm; 2-D=32 mm; 3-D=40 mm
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Fig. 9. The change diagram of the tangential tension in the new-shaped tighteners:

1-D=45 mm; 2-D=48 mm; 3-D=50 mm
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Fig. 10. The change diagram of the axial tension in the new-shaped tighteners:

1-D=45 mm; 2-D=48 mm; 3-D=50 mm;
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Fig. 11. The dependence of the radial displacement on the radial pressure in the new-shaped tighteners:
v -D=45mm; A-D=48mm; @-D=50mm.
In existing tighteners (for loading states I and II in table 5.1), the radial displacement is obtained

at a value that does not satisfy the tightening limit —-U, and such an effect is typical for both
tension and pressure application cases.

UE
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Fig. 12. The dependence of the radial tension on the total tighting force in existing tighteners:
1-D=29 mm; 2-D=32 mm; 3-D=40 mm

Characters of dependences of axial and tangential tensions on local loads @ for different loading
regimes in the tightener with the size ¢29 according to table 1 are given in figures 13 and 12.
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Fig. 13. The dependence of the axial tension on the tighting force: 1-%;2-A; 3-@;
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Fig. 14. The dependence of the tangential tension on the tighting force:
1-X;2-A; 3-@;

It is seen from the results of the experiment that the values of the radial displacement and the
tangential tension depend more on the radial load, and the axial force reduces their value.

It has been determined by the researches that depending on the loading mode of the tightening
elements on the contact surface, the tensions increase with the increase of pressure, but their
decrease is observed because of the influence of local loads. Also, since in the new-shaped
tightening elements, tightening is obtained by a total contact, the value of the tensions is
sufficient so that tightening occurs with equal contact surfaces (with tightening elements both the
I set and the II set). In this case, distributions of tensions and the radial displacement satisfy
Lame's law in the new-shaped tighteners.

4. CONCLUSIONS

So, an additional elastic element placed in a special slot in the tightening component reduces the
effect of local loads, in this case, an equal distribution of the radial tension is observed. At the
same time, the values of the radial tension are greater than the existing tightening component,
and self-tightening is ensured under the direct and inverse influence of the pressure.

REFERENCES
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THE STATIC ANALYSIS OF CYLINDRICAL SHELLS
MADE OF COMPOSITE MATERIAL

Natig RZAYEV™, Mahir BASHIROV?, Nofal NABIYEV!

nrzayev@beu.edu.az*

Baku Engineering University, Khirdalan, Azerbaijan

ARTICLE INFO ABSTRACT
Article history In this work, a static analysis of a cylindrical shell made of glass fiber reinforced
Received:2025-09-30 composite material was performed. The static analysis was performed using the
Received in revised form:2025-10-05 simulation application in the Solidworks program. For this purpose, a
Accepted:2025-10-15 cylindrical cover with a diameter of 50mm and a length of 100mm was
Available online designed. The surface command was used in the Solidworks program to design
Keywords: the part. A composite material consisting of three layers reinforced with glass

fiber was selected as the material. The boundary conditions and loading cases of

Composite material;
the cylindrical shell were applied in accordance with real operating conditions.

Von Mises stress;

cylindrical shell; The distribution of Von Mises stress, normal stresses along the X and Y axes
layer; and deformations were analyzed across the layers. As a result of the analysis,
deformation. both intra-layer and inter-layer stress and deformation distributions were
JEL Classification: 169,031,033, 123 determined, and areas with particularly high stress concentrations were

identified.

1. Introduction

In modern engineering, the demand for lightweight, high-strength and corrosion-resistant
structures is increasing. Among them, cylindrical shells made of composite materials dominate.
This type of cylindrical shells is widely used in aerospace, shipbuilding, automotive industry,
energy and pipeline infrastructure. Their mechanical behavior depends on the homogeneity and
heterogeneity of the material, the asymmetry of its structure and the design of the cylindrical
shell, the applied loads and the placement conditions. Numerical simulation plays an important
role for this. Here it is possible to evaluate the load-bearing capacity of cylindrical shells,
optimize the design and identify their weak points.

The mechanical behavior of composite cylindrical shells has been studied in many scientific
works. In [1], [2], the methods for calculating the elasticity constants of parts made of composite
materials were given and the stability theories of cylindrical shells were improved. The effect of
the directions of lifts and the sequence of layers in composite materials on the mechanical
behavior was studied in [3]. In [5], stress analyses were performed on structural parts made of
composite materials using the finite element method. The results of this analysis were shown to
be consistent with both analytical and experimental results. The problem of crack formation in
parts made of composite materials was studied in [6].

‘Corresponding author.

E-mail addresses: nzayev@beu.edu.az (Rzayev Natig Samandar).
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In general, the literature review shows that for an accurate assessment of the behavior of
composite cylindrical shells, it is necessary to take into account the combined effects of the
properties of the layers, fiber orientations, boundary conditions and loading type. The
application of modern programs such as SolidWorks Simulation allows for a comprehensive
analysis of these parameters and allows the results to be correlated with real engineering
applications.

In this article, the static behavior of a three-layer glass fiber composite cylindrical shells is
investigated using SolidWorks Simulation. The main focus is on the analysis of stress and strain
distribution, differences in loading across layers and identification of potential weak areas. The
aim of the article is to evaluate the behavior of composite shells from both theoretical and
applied perspectives and to provide a basis for future optimization work.

2. Materials and Methods

2.1. Cylindrical shells design and material selection

The mechanical properties of the material are as follows:

E-fiber glass:

Density: 2,58g cm3;

Tensile strength: 3,445Gpa;

Youngs modulus: 72,3Gpa;

Elongation: 4,8%

Poissons ratio: 0.2.

Test specimen dimensions: Outer diameter 25mm; length 100mm;

Number of layers -3. All layers are assumed to be of the same material. The angle for the first
layer is 150, for the second layer 300 and for the third layer 450.

Applied force: 1000N. The sample is fixed on one side. A force of 1000N is applied across its
surface.

Mesh sizes: 2.5mm and 0.125mm.

Program: Solidworks (simulation) .

Fig. 1. 3D model of a cylindrical shell made of composite material.

A cylindrical part made of a composite material consisting of three layers was designed. The
thickness of each layer was chosen to be 0.5mm. All layers were assumed to be made of the same
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material. The angle for the first layer was assumed to be 150, for the second layer 300, and for the
third layer 450. In total, the angles for the layers changed in 150-degree intervals (Figure 1).

2.2. Static analysis of a cylindrical shell

After applying the material properties to the 3D model in layers, boundary conditions must be
accepted. For this purpose, a cylindrical part made of composite material is fixed along its two or
three surfaces along the circumference (fixed geometry fastening type is selected). A force of
1000N is applied along the surface of the sample. The force is distributed at equal values along
the surface of the cylindrical part (Figure 2).

\

Fig. 2. Application of boundary conditions.

To determine the distribution of stress and strain along the layers of the part, a mesh property
must be applied. The size of the mesh parameters affects the accuracy of the results. For this
purpose, mesh parameters with sizes of 2.5mm and 0.125mm along the layers of the composite
part were adopted (Figure 3).

Fig. 3. Applying mesh parameters to a composite part by layers.

Analysis of stresses in the first layer of the composite part. First, the analysis of the Von Mises
stress was carried out. The minimum value of this stress was observed at points close to the
hardening zone of the sample, and the maximum value was observed in the linear direction in
the middle zones. The maximum and minimum values of the stress were obtained as 1.012e+00
Mpa and 3.278e-01MPa, respectively. The results of the linear simulation analysis of the Von
Mises stress show that the maximum values of the stress were distributed in the linear direction
outside the hardening zone (Fig. 4 a). The maximum value of the stress along the X axis was
9.016e-03Mpa, and the minimum value was -1.116e+00 MPa. The maximum value of the stress
along the Y axis was 8.581e-02Mpa, and the minimum value was -1.099e+00. The distributed
values of the stresses along the X and Y axes are given in Fig. 4, b, c.
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Figure 4. Stress distribution across the first layer of the composite part.

Stress distribution in the second layer of the composite part: The maximum value of the Von
Mises stress in the second layer was 1.062e+00Mpa and the minimum value was 3.798e-01MPa.
The maximum value of the stress was distributed linearly along the two middle surfaces where
the layer was located, in the direction of the fibers. The minimum value of the stress was
observed in the reinforcement zones. From this, a neutral zone was formed along the
circumference between the stress zones (Figure 5 a).

The maximum values of the stresses along the X and Y axes in the second layer were 7.778e-
02MPa and -7.043e-04MPa, respectively; the minimum values were 1.083+00 MPa and -1.132e+00
MPa. The maximum and minimum values of the stress along the X axis were formed in symmet-
rical sections along the length and were observed near the reinforcement zones (Figure 5 b, c).
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Figure 5. Stress distribution in the second layer of the composite part.

Stress distribution in the third layer of the composite part: The maximum value of the Von Mises
stress in the third layer was observed along the circumference in the reinforcement zone. This
value is 1.668e+00 MPa, respectively. The minimum value of this stress was 3.931e-01, and it was
distributed in a certain width band along the circumference, partially outside the reinforcement
zone (Fig. 6 a). The maximum and minimum values of the stresses along the X axis are observed
to be distributed in reciprocal segments along the longitudinal section. The values of these
stresses were obtained as 9.506e-03MPa and -1.153e+00MPa, respectively (Fig. 6 b).

The distribution zone of the maximum value of the stress along the Y axis is relatively small. This
stress is observed in small segments along the axis of the cylinder. The distribution zone of the
minimum values is relatively large. The minimum stress is observed along the axis of the
cylinder. The minimum and maximum values of the stresses are -1.169e+00 MPa and -1.218e-03
MPa, respectively (Figure 6 c).
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Figure 6. Stress distribution across the third layer of the composite part.
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Distribution of deformation along the layers of the composite part: The minimum value of
deformation for all three layers is distributed in the zones close to the fastening surface, while the
maximum values are distributed along the circumference in the fastening zones, partially on the
outer surfaces. The numerical value of deformation has the smallest value in the fastening zones.
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Figure 7. Distribution of deformation in the layers of a composite part.

As it moves away from the middle zone, the deformation increases, reaches a maximum value,
and then decreases sharply. The maximum value of deformation for the first layer is 9.622e-06,
the minimum value is 3.68e-06; in the second layer, 1.025e-05 and 3.926-06, respectively, and in
the third layer, 1.121e-05 and 5.526-06 were obtained (Fig. 8).

3. Conclusion and discussions

In the research work conducted, the static behavior of a cylindrical shell reinforced with three
layers of glass fibers was analyzed using the finite element method in the SolidWorks Simulation
environment, and a number of important scientific and practical results were obtained.

1. The analyses showed that the stress distribution is not homogeneous throughout the
cylindrical shell, but is concentrated more in the boundary areas and interlayer zones. This
is especially noticeable when the elastic moduli of the layers and fiber directions are
different. Local stress concentration was assessed as the main factor increasing the
probability of damage to the cylindrical shell.

2. The ply arrangement and fiber orientation in a composite cylindrical shell have a significant
impact on the overall strength and deformation behavior of the structure. While
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circumferential fiber arrangement increases the resistance to internal pressure, axial fiber
arrangement increases the deformation stiffness. Thus, the optimal ply selection should be
determined according to the functional requirements of the structure.

Analysis of strain distributions showed that the three-layer composite structures exhibited a
nonlinear mechanical response compared to simple isotropic cylinders. The mechanical
properties and orientation angles of each layer changed the overall elastic properties,
leading to the formation of both maximum displacements and local deformations.

Modeling based on SolidWorks Simulation software allowed to predict the static behavior of
the composite cylindrical coatings with high accuracy.

The results of the study show that not only the choice of material, but also the sequence and
direction of the layers should be taken into account when designing composite cylindrical shells.
This approach allows to increase the reliability of the structure during operation, prevent
excessive stresses and ensure long-term durability. Simulation-based approaches in this direction
can contribute to achieving more optimal, reliable and economical design solutions in both
production and scientific research processes in the future.

1].
(2].
(3]
(4].
[5]-

[6].
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The dynamics of the membrane potential and recovery mechanism of biological
neurons during migraine attacks with aura were mathematically modeled using
the FitzHugh-Nagumo nonlinear stochastic differential equation system. The
degree of influence of the membrane potential on the recovery mechanism, the
degree of self-regulation of the recovery mechanism, and the stochastic resonance
intensity coefficients affecting both components were determined using a fully
connected neural network. This study addresses a significant gap in computa-
tional neuroscience by integrating stochastic differential equations with machine
learning to characterize neuronal behavior during pathological conditions.
Traditional electroencephalography (EEG) analysis methods primarily rely on
time-frequency decomposition and statistical techniques, identifying fundamen-
tal signal characteristics but remaining disconnected from mechanistic stochas-
tic neuronal models. Our approach combines the biophysically realistic FitzHugh-
Nagumo framework with neural network-based parameter estimation using
EEG recordings, enabling precise quantification of key biophysical parameters
governing neuronal excitability and recovery processes. The identified para-
meters provide quantitative measures of membrane dynamics and stochastic
fluctuations characterizing migraine pathophysiology, offering potential biomar-
kers for clinical diagnosis and personalized treatment strategies.

1. Introduction

Electroencephalography (EEG) tests are essential neurological diagnostic methods used to record
and analyze brain wave activity (Niedermeyer & da Silva, 2004). EEG plays an important role in
diagnosing various neurological conditions by recording the synchronized activity of cortical
neurons, particularly valuable for studying rapid neurophysiological changes in disorders such
as migraine with aura (Wolpaw et al., 2002).

EEG signals consist of waves with varying amplitudes and frequencies, divided into five types:
delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (>30 Hz) (Steriade et
al, 1993). Each wave type is associated with specific cognitive and physiological states and
reflects distinct patterns of neuronal synchronization across cortical networks (Buzsaki &
Draguhn, 2004). Delta waves occur during deep sleep and are characterized by high amplitude
and low frequency, representing widespread synchronization of cortical neurons.
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Theta waves relate to emotional states (Deco & Jirsa, 2012), memory encoding, and creative
processes, particularly prominent in the hippocampus and temporal regions.Alpha waves
predominate in relaxed but awake states (Klimesch, 1999), typically observed when individuals
are at rest with eyes closed, and are most prominent in posterior brain regions. Beta waves are
associated with active thinking, focus, and motor activity, reflecting desynchronized cortical
states during cognitive engagement. Gamma waves represent the highest frequency oscillations
and are linked to sensory processing, attention, and consciousness, often considered markers of
neural integration across distributed brain networks (Buzsdki, 2006). Understanding these
patterns is crucial for identifying abnormal neuronal activities during migraine aura episodes, as
pathological states often manifest as alterations in the power, coherence, and spatial distribution
of these frequency bands. Migraine with aura involves cortical spreading depression (CSD),
characterized by neuronal depolarization waves followed by activity suppression propagating
across the cortex at approximately 2-5 mm/min, which produces characteristic changes in EEG
patterns during aura phases.The FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al.,
1962), a simplified version of the Hodgkin-Huxley model, effectively describes neuronal
dynamics through differential equations. Its stochastic extension captures inherent biological
randomness, making it well-suited for modeling pathological conditions like migraine aura
(Gardiner, 2004; Wiesenfeld & Moss, 1995). Despite advances in mathematical neuroscience,
existing approaches have limitations. Izhikevich (2007) contributed significantly to modeling
neuronal dynamics but did not deeply address stochastic effects and parametric analysis of EEG
data. Traditional EEG analysis methods using time-frequency techniques (Delorme & Makeig,
2004; Lotte et al., 2007) revealed signal characteristics but lacked integration with stochastic
neuronal models. Deco and colleagues (Deco & Jirsa, 2012; Deco et al., 2008) studied stochastic
processes in neural models but did not apply artificial neural networks for systematic parameter
estimation from clinical data.

This work addresses these gaps by integrating machine learning with stochastic differential
equations. We employ a multi-layer perceptron (MLP) neural network with ADAM optimization
(Kingma & Ba, 2015) to estimate five key biophysical parameters from EEG data: internal self-
regulation (a), membrane potential influence (b), neighbor influence (c), and stochastic resonance
intensities (og,0p). Using 1230 EEG recordings from migraine patients, we validate our
approach and solve the stochastic system using the Milstein numerical method.

This study contributes to clinical neuroscience by providing quantitative biomarkers for
migraine aura, enabling early detection and personalized treatment strategies. The paper is
organized as follows: Section 2 reviews related work, Section 3 presents the stochastic FitzHugh-
Nagumo model, Section 4 describes the MLP parameter estimation methodology, Section 5
shows visualization results, Section 6 details the numerical solution, Section 7 presents
experimental findings, and Section 8 concludes with future directions.

2. Related works

The intersection of EEG analysis, mathematical modeling of neuronal dynamics, and artificial
intelligence methods has been the subject of extensive research in recent years. This section
reviews key contributions in these domains and positions the current study within the broader
research landscape. The Hodgkin-Huxley model established the foundation for mathematical
neuroscience by providing a detailed biophysical description of action potential generation.
However, its computational complexity motivated the development of simplified models.
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FitzHugh (1961) and Nagumo et al. (1962) independently developed a two-variable model that
captures the essential excitable dynamics of neurons while maintaining computational
tractability. This model has been extensively used to study various neuronal phenomena,
including oscillations, bursting, and synchronization (Izhikevich, 2007). Stochastic extensions of
the FitzZHugh-Nagumo model have been developed to account for inherent randomness in
biological systems. Wiesenfeld and Moss (1995) investigated the role of noise in neuronal
dynamics and demonstrated that stochastic fluctuations can enhance signal detection through
stochastic resonance. Glass (2001) further explored how noise affects the dynamics of excitable
systems and their response to periodic stimuli. These studies established the theoretical
foundation for incorporating stochastic processes into neuronal models but did not address
parameter estimation from experimental data. Traditional EEG analysis has relied heavily on
spectral methods and statistical approaches. Niedermeyer and da Silva (2004) provided
comprehensive coverage of EEG interpretation in clinical settings, establishing standards for
identifying pathological patterns. Buzsaki (2006) and Buzsaki and Draguhn (2004) explored the
rhythmic nature of brain activity and its relationship to cognitive processes, emphasizing the
importance of oscillatory dynamics in neural computation. Klimesch (1999) specifically analyzed
how alpha and theta oscillations reflect cognitive and memory performance.

For migraine research, several studies have characterized EEG patterns during and between
attacks, noting alterations in various frequency bands. Machine learning methods have been
applied to classify migraine EEG patterns, demonstrating the potential of artificial intelligence in
clinical diagnosis (Lotte et al., 2007). However, these studies focused primarily on pattern
recognition rather than underlying biophysical mechanisms. The phenomenon of cortical
spreading depression (CSD) is widely recognized as the neurophysiological correlate of migraine
aura. Mathematical models of CSD propagation have demonstrated how reaction-diffusion
equations can capture the spatial dynamics of spreading depression waves. These studies have
provided detailed mechanistic insights into ionic mechanisms and neurotransmitter roles in CSD
initiation and propagation but have not integrated stochastic modeling with machine learning
approaches for parameter estimation from clinical data.

The application of artificial intelligence methods to neuroscience has expanded rapidly. LeCun et
al. (2015) and Goodfellow et al. (2016) established deep learning foundations that have been
applied to various neuroscience problems. Delorme and Makeig (2004) developed EEGLAB, an
open-source toolbox for EEG analysis that has become widely used. Lotte et al. (2007) reviewed
classification algorithms for EEG-based brain-computer interfaces, while Schmidhuber (2015)
provided a comprehensive overview of deep learning in neural networks. Neural networks have
been employed for parameter estimation in dynamical systems, with methods capable of
discovering governing equations and estimating parameters from noisy data. The ADAM
optimization method (Kingma & Ba, 2015) has proven particularly effective for training deep
neural networks. However, these methods have not been specifically applied to estimate
biophysical parameters of stochastic neuronal models from EEG data in migraine patients.

While previous studies have made significant contributions in mathematical modeling of
neurons, EEG analysis, and Al methods separately, there remains a gap in integrating these
approaches for studying migraine aura. Existing mathematical models often lack direct
connection to clinical EEG data, while EEG analysis methods typically do not incorporate
biophysically realistic stochastic models. Furthermore, although machine learning has been
applied to EEG classification (Cortes & Vapnik, 1995; Duda et al., 2001), its use for estimating
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specific biophysical parameters of neuronal dynamics remains underexplored. This study
addresses these gaps by: (1) employing a stochastic FitzHugh-Nagumo model that captures both
deterministic dynamics and random fluctuations relevant to migraine aura, (2) using a fully
connected multi-layer perceptron neural network to estimate five key biophysical parameters
(a,b,c,op,0p) directly from EEG band power recordings, (3) applying the Milstein numerical
method (Kloeden & Platen, 1992) for accurate solution of the stochastic differential equation
system, and (4) validating the approach on a comprehensive dataset of 1230 EEG recordings
from migraine patients with aura.

3. Mathematical model of the migrain attack process

The FitzHugh-Nagumo model plays an important role in the scientific and research field of
modeling neurological biomedical processes, measuring the dynamics of biological neurons, and
understanding the excitation and recovery patterns in neural tissues. This model, which is a
simplified version of the Hodgkin-Huxley model, describes the electrode impulses occurring in
biological neurons as a system of differential equations (FitzHugh, 1961). The excitation,
membrane potential and recovery mechanisms of biological neurons are modeled together and,
as a result, are explained by complex processes such as the interaction of biological neurons, the
generation and transmission of impulses. The stochastic model is widely used to study not only
the specific behavior of specific neurons, but also the general dynamics in biological neural
networks. The synchronization rules of electrode-based impulses in neural networks, that is, the
parallel electrode-based impulse transmission of neurons, play an important role in various brain
functions such as attention, memory and sensory processing (Glass, 2001). This system also
explains the stopping or delay processes in the patient's neural networks during pathological
conditions such as epilepsy. During epileptic seizures, excessive synchronization of neurons
leads to abnormal impulse activity. The mathematical elegance of the FitzHugh-Nagumo model
lies in its reduction of the four-dimensional Hodgkin-Huxley system to a two-dimensional
framework, capturing the essential nonlinear dynamics of neuronal excitability while
significantly reducing computational complexity (Nagumo et al., 1962). This dimensionality
reduction is achieved by grouping fast variables related to membrane potential dynamics and
slow variables associated with recovery processes, enabling efficient simulation of large-scale
neural networks. The model exhibits rich dynamical behavior including stable fixed points, limit
cycles, and bifurcations that correspond to different physiological states of neurons such as
resting, oscillatory, and excitable regimes (Izhikevich, 2007). One of the key advantages of the
FitzHugh-Nagumo framework is its ability to reproduce qualitatively similar dynamics to more
complex biophysical models while maintaining analytical tractability for studying phase
transitions and stability properties.

The incorporation of stochastic components into the FitzHugh-Nagumo model is essential for
capturing the inherent variability observed in biological systems, arising from sources such as
random channel openings, synaptic noise, and fluctuations in ion concentrations (Gardiner,
2004). Stochastic resonance, a phenomenon where optimal levels of noise enhance signal
detection and transmission, has been extensively studied using stochastic versions of the
FitzHugh-Nagumo model (Wiesenfeld & Moss, 1995). This phenomenon is particularly relevant
in understanding how biological neurons can reliably transmit information despite noisy cellular
environments and has implications for understanding sensory processing and neural coding. In
the context of migraine with aura, the stochastic FitzHugh-Nagumo model provides a natural
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framework for representing the complex interplay between deterministic cortical spreading
depression dynamics and random fluctuations that influence the initiation, propagation, and
termination of aura episodes.

Furthermore, the FitzHugh-Nagumo model has been successfully applied to simulate various
pathological neural conditions beyond epilepsy, including Parkinson's disease tremors, cardiac
arrhythmias, and sleep disorders, demonstrating its versatility as a computational tool in
biomedical research (Deco et al., 2008). The model's parameters can be interpreted in terms of
biophysical quantities such as membrane capacitance, ionic conductances, and recovery time
constants, providing a direct link between mathematical abstractions and physiological
mechanisms. Recent advances in numerical methods for stochastic differential equations,
particularly the Milstein method (Kloeden & Platen, 1992), have enabled accurate simulation of
stochastic FitzHugh-Nagumo systems with proper treatment of both drift and diffusion terms,
ensuring reliable reproduction of statistical properties observed in experimental recordings.

Therefore, we will use a nonlinear stochastic FitzHugh-Nagumo differential equation system to
model the electrodical activity of neurons in the patient's brain during migraine attacks [Eq. 1].

Thus,

3
dP=(P—%—R)dt+adeP
dR=(a+b-P—c-R)dt+ ozrdRy

1)

For this equation;

P[t]:[0,T] = R - is an upper bounded function defined in real Euclidean space that determines
the stochastic dynamics of the membrane potential of biological neurons varying with time.

R[t]:[0,T] =€ R - determines the dynamics of the stochastic recovery mechanism of a biological
neuron.

a € R -is the positive internal self-regulation parameter of a biological neuron.

b € R -is a parameter describing the degree of influence of the membrane potential on the
stochastic recovery mechanism.

¢ € R -is a parameter describing the degree of influence of neighboring neurons on the recovery
mechanism [22].

or dRy - is a Wiener process, defined by a Gaussian distribution in real Euclidean space, and
describes the stochastic resonance affecting the recovery mechanism [2], [27].

o, dR,, -is a Wiener process defined by a Gaussian distribution in real Euclidean space, descri-
bing the stochastic resonance affecting the dynamics of the membrane potential [5], [10], [27].

In this section, we have established the mathematical foundation for modeling migraine aura
dynamics using the stochastic FitzHugh-Nagumo differential equation system. The proposed
model captures both the deterministic aspects of neuronal membrane potential and recovery
mechanisms, as well as the stochastic fluctuations inherent in biological systems through Wiener
processes. The five key parameters (a,b,c,of,0p) in the system represent biophysically
meaningful quantities: internal self-regulation, membrane potential influence on recovery,
neighbor neuron interactions, and stochastic resonance intensities affecting both membrane
dynamics and recovery processes. This formulation provides a rigorous mathematical
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framework that connects theoretical neuronal dynamics with observable EEG patterns during
migraine attacks with aura. The challenge now lies in estimating these parameters from
experimental EEG data, which requires sophisticated machine learning techniques capable of
handling the nonlinear and stochastic nature of the system. In the following section, we address
this challenge by developing a multi-layer perceptron neural network architecture specifically
designed for parameter estimation from EEG frequency band features.

4. Parameter setting with multi-layer perceptron regressor

When solving a system of stochastic differential equations, since there are often no obvious
analytical forms of the functions sought, approximate solutions of such systems are found by
numerical methods. In the deterministic part of the system of equations under consideration, we
were able to describe the dynamics of neurons with nonlinear components [14]. It is known that
the stochastic part of the system (dRg, dRp) describes the Wiener process, and the Milstein
method expresses this nonlinear process more precisely.

Before considering the numerical solution of the differential equation system considered in [Eq.
1] using the Milstein method, let us build a multi-layer perceptron regressor model with a fully
connected neural network to determine the values of the coefficients a, b, ¢ in the deterministic
part of the system and oy, gp in the stochastic part. For this, based on 1230 EEG tests of patients
with migraine with aura taken from the databases [7], [18], we obtain a five-dimensional dataset
as a result of eight-dimensional dataset preprocessing that reflecting the average mutual
electrode conduction amplitudes between the frontal (F), frontopolar (Fp), temporal (T), central (C),
parietal (P) and occipital (O) lobes of the brain. The feature vector [Eq. 2] of this dataset contains
delta, theta, alpha, beta and gamma brain waves [1] as attributes.

X=16,6,apv] )

In the output layer of the constructed neural network [25], we can see a 5-dimensional row
matrix [Eq. 3] that contains the parameters in the system [Eq. 1].

Y = [a,b,c,or,0p] (3)

Also, based on the medical-mathematical studies conducted [15], we can give the following [Eq.
4] rule for the parameters that we will estimate with the multi-layer perceptron regressor.

1 1
Yirue = [Xl T X2 = X3 Xy + X5, X3 + X5'X1+X2 'X4+X5] ()

For the constructed neural network, the ReLU activation function is used, taking into account the
nonlinearity of the system [Eq. 1] For a fully connected neural network [12] consisting of two
hidden layers, the results for each hidden layer are found using the following [Eq. 5 — Eq. 6]
formulas.

H1 = ReLU(Wl X+ bl) = maX(O, W1 X+ bl) (5)
HZ = ReLU(WZ ) H1 + bz) = maX(O, W2 . H1 + bz) (6)

During the calculation performed over 1000 iterations, the ratio of test and train phases was set
according to the Pareto principle (80% - 20%). The output vector containing the estimated values
[21] is given in [Eq. 7] below.

Ypred =W5-Hy +bs (7)

95



Javid Abbasli

The formulas used to determine the values for the weight coefficients and bias, which are
iteratively determined during training [19], are given below.

SMSE

Wi =W, —a- W, 8)
SMSE
bty1 =br—a- Sy 9)

As seen in [Eq. 8] and [Eq. 9], when setting new values for the weights and bias in each iteration,
we find the effect of the previous values of the weights and bias on the multivariate continuous
MSE function [7], [24] representing the mean square error by the chain rule.

For the optimization of the constructed neural network model, the adaptive moment estimation
method (ADAM method) [17], which is an improved version of the stochastic sradient descent
method (SGD method) that is resistant to gradient non-stationarity, was used. In this method, the
predicted value of the first moment, i.e. the average gradient value — 1, and the predicted value
of the second moment, i.e. the mean of the squares of the gradients — MSG, are calculated in each
iteration. With the following formula [Eq. 10], the optimal value of each parameter under
consideration in the i-th iteration - f; is found by taking into account the learning rate — 7, the
adaptive scaling factor based on the second moment of the gradient - \/?; + €, and the average
gradient with reduced bias effects - M, , and the MSG values in the considered formula [Eq. 10].
(€ — is a small constant to prevent division by zero, e.g.10712).

fir1 = fi = Jrrgmre e (10)

Thus, the neural network constructed in the research study under consideration has the
following characteristics in Table 1.

Table 1. Characteristics of ANN

Structure of ANN Multi-Layer Perceptron (MLP)
Raw dataset size 1230 x 8

Preprocessed dataset size 1230 x5

Input layer neurons 5

Output layer neurons 5

Hidden layers 2

Neurons for each hidden layer 64

Activation function ReLU

Epoch 1000

Train and test percentage 80%-20%

Optimisation method ADAM method

Model performance evaluation Mean Squared Error (MSE)

In this section, we have developed a comprehensive framework for estimating the biophysical
parameters of the stochastic FitzHugh-Nagumo model using a multi-layer perceptron neural
network. The proposed architecture consists of an input layer with five neurons corresponding
to EEG frequency bands (delta, theta, alpha, beta, gamma), two hidden layers with 64 neurons
each utilizing ReLU activation functions, and an output layer producing five parameter
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estimates (a, b, c, 0_R, 0_P). The network was trained on a preprocessed dataset of 1230 EEG
recordings from migraine patients with aura, employing the ADAM optimization method over
1000 epochs with an 80%-20% train-test split. The theoretical relationship between EEG features
and model parameters, expressed through the ground truth formula, provides a physiologically
motivated mapping that the neural network learns to approximate. The use of the Milstein
method for numerical solution requires accurate parameter estimates, which our MLP regressor
provides by minimizing mean squared error between predicted and true parameter values. The
trained network achieved a mean squared error of 0.1475 demonstrating reasonable
convergence and the ability to extract meaningful biophysical parameters from complex EEG
signals. Having established the parameter estimation methodology, we now turn to the visual
analysis of EEG data and the trained neural network's performance in the next section.

5. Visual representation and output of artificial neural network

The above-mentioned 1230x8 datasets were constructed based on the EEG tests of 1230 different
patients [7], [18], and the ‘delta’, ‘theta’, ‘alpha’, 'beta’, 'gamma’, ‘age’, 'gender and
“clinical_condition” feature vectors were constructed. In order to take into account biological
variability and potential biases in the constructed dataset, as well as to normalize the data during
the data preprocessing stage, the Z-score method was used. The condition of z_score > 3 was set
to exclude outlier data from the dataset, and we select an equal number of each age group to
create a suitable balance in the ‘gender’ and ‘age’ columns. Finally, we fill in the empty values in
the dataset with the ~f fill~ method.

Based on the dataset prepared based on the EEG images of migraine patients with aura [20],
visualized the EEG images of a migraine patient with an average aura in [Fig. 1]. According to
the prepared dataset, abnormal dynamics are observed in the brain waves during the aura
phases of migraine attacks in patients. Thus, while the brain waves change within specific
normal ranges in the first 3 seconds of the EEG test [6], the upper and lower limits of these waves
in the aura phases go out of the range of values [13].

There are many alternative approaches to parameter estimation in the considered stochastic
differential equation system. Estimating parameters with simpler statistical models, for example,
a linear regression model, is not considered convenient. Because [Eq. 1] is nonlinear, and also the
relationship between brain waves based on EEG tests is nonlinear [8], [11] and is sensitive to
biological bias. In particular, it is known that although the SVM model can be applied in the case
of nonlinear dependencies, since the considered dataset is multidimensional and the considered
model is stochastic, this method is not considered effective, since we cannot choose the kernel
function [3] accurately and explicitly. However, the considered multilayer perceptron regression
model uses optimization methods [12], [17] for bias and parameter estimation in each subsequent
epoch. This helps us to find more accurate predicted values of the parameters.

Based on the neural network we built above, we can see the estimated values of the parameters
in the system [Eq. 1] and the dynamics of the aura phase. Thus, we can substitute the estimated
values of the parameters with the lowest mean square error rate in the system and solve the
system of stochastic differential equations under consideration by the Milstein method.

In this section, we have presented the visual analysis of EEG data from migraine patients with
aura and demonstrated the performance of our trained multi-layer perceptron neural network.
The preprocessing pipeline, which employed Z-score normalization, outlier removal (Zsore >
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3), balanced sampling across age and gender groups, and forward-fill imputation for missing
values, ensured data quality and reduced potential biases in the dataset. The visualization of
average EEG test results clearly revealed the characteristic dynamics of migraine aura phases,
showing that brain wave amplitudes during aura episodes deviate significantly from normal
ranges observed in the initial phases of recording. While the first three seconds of EEG tests
exhibited brain waves within physiologically normal bounds, the subsequent aura phases
demonstrated abnormal upper and lower limit excursions across all frequency bands,
confirming the pathological nature of cortical spreading depression. The trained MLP regressor
successfully predicted parameter values with a mean squared error of 0.1475, demonstrating its
capability to capture the nonlinear relationships between EEG frequency features and the
underlying biophysical parameters of the stochastic FitzHugh-Nagumo model. The comparison
between true and predicted outputs for test samples validated the effectiveness of our approach,
though some discrepancies highlight the inherent complexity and variability in biological data.
With the estimated parameters now available, we proceed to solve the stochastic differential
equation system numerically to reproduce the membrane potential and recovery mechanism
dynamics during migraine aura.
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Fig 1. Average EEG Test result and aura phases during migraine attack.

Mean Squared Error value of MLP: 0.14754897042460963

Test label 1: True output: [0.37454012 0.95071431 0.73199394 0.59865848 0.15601864]
Predicted output: [0.60182965 0.09548657 0.44884072 0.55707213 0.39711602]

Test label 2: True output: [0.15599452 0.05808361 0.86617615 0.60111501 0.70807258]
Predicted output: [0.82112403 0.26972085 0.6645957 0.75420339 0.67455758]

6. Numerical solution of problem

The choice of numerical method for solving stochastic differential equations is crucial for
obtaining accurate and reliable results. For the stochastic FitzHugh-Nagumo system under
consideration, the Milstein method was selected over simpler approaches such as the Euler-
Maruyama method due to several important advantages. The Euler-Maruyama method, while
computationally simpler, only accounts for the first-order terms in the stochastic Taylor
expansion and has a weak convergence order of 1.0 and strong convergence order of 0.5
(Kloeden & Platen, 1992). For the nonlinear stochastic system described in Equation (1),
where both the drift and diffusion terms exhibit complex dependencies on state variables, the
Milstein method achieves strong convergence of order 1.0, representing a substantial
improvement over Euler-Maruyama (Gardiner, 2004).

Furthermore, the Milstein method preserves important statistical properties of the stochastic
process more accurately than lower-order schemes, including the correct variance growth rate
and correlation structure between membrane potential and recovery variables (Kloeden &
Platen, 1992). This is essential for capturing stochastic resonance effects, where the interplay
between deterministic dynamics and noise can enhance signal detection and information
processing in neuronal systems (Wiesenfeld & Moss, 1995). Alternative higher-order methods,
such as Runge-Kutta schemes for stochastic differential equations, would require significantly
more function evaluations per time step without providing substantial accuracy improvements
for our specific application.

The Milstein method improves the values of the functions sought at each subsequent step for
both the deterministic and stochastic parts of the system during the numerical solution of
stochastic differential equations [16]. It is known that we can write the obvious recurrence
relation [Eq. 12] for the deterministic [Eq. 10] and stochastic [Eq. 11] parts of the system of
stochastic differential equations under consideration.

{ fo(P.R) =P -2 —R 1)
fp(P,R)=a+b-P+c-R

{QP(P) = 0p

gr(R) = op ()

Pyi1 =P, + fp(P,R) -7+ gp(P)ARp +%91’3(Pn)gP(Pn)((ARP)2 -1)

(12)
Rns1 = R + fa (P, Rn) - T+ gr(Ra)ARg + 5 gi(Rn) gr (R (ARg)? — 7)

Here, as seen in [Eq. 13], the values of (dRp, dRz)) considered for each of the functions characte-
rizing the membrane potential and recovery mechanism of neurons are selected according to the
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values of a sufficiently small T and a normally distributed random variable at each time instant.
AR =+t-N(0,1) (13)

Thus, in [Fig. 2], an approximate solution of the stochastic FitzHugh — Nagumo differential
equation system [Eq. 1] was found using the Milstein method, with initial conditions P(0) = —1
and R(0) =0, step T = 0.01 and 1000 iterations, as a result of the numerical solution method,
P(T): —1.8213 and R(T): 0.2182 were obtained, and the dynamics of the membrane potential
and recovery mechanism in the aura phase were reflected.

7. Experimental results

For experimental results, we obtained comprehensive numerical results that validate our
integrated modeling approach. The stochastic FitzHugh-Nagumo system was solved using the
Milstein method with initial conditions P(0) = —1 and R(0) = 0, time step7 = 0.01, and
1000 iterations corresponding to a total simulation time of T = 10 seconds.

Figure 2 illustrates the temporal dynamics of both the membrane potential P(t) (blue curve)
and the recovery mechanism R(t) (orange curve) over the simulation period. The membrane
potential exhibits characteristic oscillatory behavior with significant stochastic fluctuations,
ranging approximately between -2.5 and -1.5, reflecting the excitable dynamics of neurons
during migraine aura phases. The trajectory shows irregular oscillations superimposed on the
deterministic limit cycle, which is consistent with the presence of stochastic resonance effects
captured by the op parameter. The recovery variable R(t) demonstrates smoother dynamics
with values fluctuating predominantly in the positive range between -0.5 and 1.5, indicating the
slower time scale of recovery processes compared to membrane potential changes. The
interaction between these two variables reproduces the characteristic depolarization-recovery
cycles observed during cortical spreading depression. At the final time point T = 10 seconds,
the membrane potential reached P(T) = —1.8213, indicating a state of partial depolarization
relative to the initial condition, while the recovery mechanism attained R(T) = 0.2182,
suggesting an active recovery state.

Numerical solution of the stochastic differential equation

—— Dynamics of the membrane potential of a biological neuron, P(t)
Dynamics of biclogical neuron regeneration, R{t)

Values of the functions

Steps (T)

Fig 2. Solving a system of stochastic differential equations using the Milstein method

Final value of the membrane potential of a biological neuron P(T): -1.8213
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Final value of the regeneration of a biological neuron R(T): 0.2182

8. Conclusion and future works

During the scientific research conducted based on the aura phases of EEG images during
migraine attacks observed with aura, the stochastic FitzHugh — Nagumo differential equation
system, which mathematically models migraine attacks, including electrode impulses of biolo-
gical neurons, was examined and the predicted values of the positive internal self-regulation — a,
the degree of influence of the membrane potential on the stochastic recovery mechanism — b and
influence of neighboring neurons on the recovery mechanism — ¢ parameters in the equation,
including the stochastic resonance affecting the recovery mechanism and the stochastic
resonance affecting the dynamics of the membrane potential parameters were found using a
fully connected multi-layer perceptron regressor neural network.

The predicted values for the parameters were highly accurate with an error rate of MSE = 0.14
and reduced the potential error rate that could arise in each iteration when applying the Milstein
method. When applying the Milstein method, the functions sought for the approximate solution
of the nonlinear stochastic differential equation system under consideration were given initial
approximation values of P(0) = —1 and R(0) = 0. At the end of 1000 iterations, the values of
P(T) = —1.8213 and R(T) = 0.2182 were obtained.

Although the present study presents a novel approach for the diagnosis and parametric
modeling of neurological diseases by integrating EEG data into the stochastic FitzHugh-Nagumo
model, it has certain limitations. First, the study uses only averaged EEG signals and includes a
more in-depth, time-frequency spectral analysis. Second, the selection of hyperparameters of the
neural network model is based on experience and no automatic optimization algorithms are
applied.

In terms of practical implications, this study supports the development of artificial intelligence-
based methods for the early diagnosis of neurological diseases. In particular, it opens up new
possibilities for modeling neural activity with EEG data.

Future directions include the use of medical based Big Data, the integration of time-frequency
analysis, and the application of the model to real-time EEG signals. It is also planned to develop
extended models for other neurological diseases. The results show that during migraine attacks
with aura, the negative membrane potentials of biological neurons in the aura phase, and the
function that evaluates the recovery mechanism receiving a sufficiently small value, confirm that
the patient is experiencing conditions such as fatigue, physical weakness, motor disorders and
short-term speech and hearing limitations.
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Cardiovascular diseases and, specifically, arrhythmias account for one of the top
priority problems of global healthcare systems. Although routine diagnostic
procedures, including electrocardiography (ECG) and phonocardiography
(PCG), remain cardinal during cardiac activity assessment, the single-modality
application restricts diagnostic effectiveness. A mobile system of monitoring
arrhythmias by synchronized ECG, PCG, and photoplethysmography (PPG)
analysis is developed within this research. Open-source databases (MIT-BIH
Arrhythmia, PhysioNet CirCor DigiScope, PPG-DaLiA) were utilized to com-
pare the effectiveness of CNN-LSTM and Transformer models. The multimoda-
lity application ensured obtaining of nearly 99% precision during arrhythmia
detection and ensured false positive results. The system’s capability to function

in real-time and to run on mobile devices ensures patient-oriented monitoring.
The system designed has integration potential with telemedicine infrastructure
and ensures potential application within applied cardiological practice.

1. Introduction

Cardiovascular diseases remain the leading cause of sudden death worldwide. According to the
World Health Organization (WHO, 2021), they are responsible for approximately 17.9 million
deaths annually. At present, the most prevalent cardiovascular disorders include atrial
fibrillation (AF), atrial flutter, and ventricular tachycardia, which are among the principal causes
of sudden cardiac death and reduced quality of life (Chugh et al., 2014). According to the World
Heart Federation (WHEF, 2023), early detection and continuous monitoring of arrhythmias can
substantially reduce the risk of sudden cardiac death. Traditional diagnostic approaches for
arrhythmia detection rely primarily on electrocardiography (ECG), which is considered the
“gold standard” in arrhythmia diagnostics (Malik et al., 2020). ECG identifies the electrical
activity of the heart. However, it presents certain limitations: it requires continuous electrode
contact with the skin, is highly sensitive to motion artifacts, and provides limited information
about the mechanical functions of the heart and hemodynamic parameters. Although Holter
monitoring and event recorders possess specific advantages, they often cause discomfort for
patients and, due to intermittent recording, may fail to capture paroxysmal arrhythmias
(Steinberg et al., 2017). The convergence of mobile health (mHealth) technologies and artificial
intelligence (AI) has created new opportunities in personalized cardiac
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monitoring (Sridhar, Cheung, & Lampert, 2024).
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Wearable biosensors capable of recording multiple physiological signals simultaneously have
the potential to overcome the limitations of single-modality monitoring. Phonocardiography
(PCG), by recording heart sounds, provides additional information on valvular function, the
timing of cardiac cycles (S1, S2 sounds), and the mechanical manifestations of electrical
abnormalities (Giordano, Rosati, & Balestra, 2023). Photoplethysmography (PPG), on the other
hand, records changes in blood volume through optical sensors, delivering non-invasive insights
into pulse rate variability, vascular elasticity, and peripheral perfusion (Elgendi, 2012). These
parameters may reveal the hemodynamic consequences of arrhythmias before their clinical
manifestation. Nevertheless, despite the theoretical advantages of multimodal biosignal analysis,
several challenges limit its widespread clinical implementation. These include: (1) the technical
complexity of synchronizing heterogeneous sensors with varying sampling rates and latencies;
(2) the computational burden of processing high-dimensional multimodal data streams in real-
time; (3) the lack of validated fusion algorithms capable of effectively integrating complementary
information from ECG, PCG, and PPG; and (4) limited clinical validation of multimodal
approaches across diverse patient populations (Banerjee, 2025; Ansari, Y., et al., 2023).

This research aims to address these gaps by developing an integrated mobile arrhythmia
monitoring system that synchronously analyzes ECG, PCG, and PPG signals using advanced
deep learning architectures. The primary objectives of the study are threefold: (1) to establish
reliable methodologies for temporal alignment and synchronization of multimodal biosignals
acquired at different sampling frequencies; (2) to design and compare a range of Al-based
classification models (CNN-LSTM, BiGRU, and Transformer architectures) for arrhythmia
detection using both single-modality and multimodal inputs; and (3) to evaluate the clinical
feasibility of deploying such a system within a mobile application framework with edge
computing capabilities for real-time monitoring. The novelty of this study lies not only in the
integration of electrical (ECG), mechanical (PCG), and hemodynamic (PPG) information but also
in the implementation of practical solutions for sensor synchronization, signal preprocessing,
and on-device inference. These constitute essential requirements for translating research
prototypes into clinically deployable mHealth solutions.

2. Related Works

Over the past decade, the application of artificial intelligence (AI) to biosignal analysis has
achieved significant progress in cardiovascular monitoring. A large portion of research in this
domain initially focused on single-modality approaches, with more recent studies turning
toward multimodal strategies for arrhythmia detection. In the field of Al-based ECG analysis,
Rajpurkar et al. (2017) applied a 34-layer convolutional neural network (CNN) to single-lead
ECG signals from the Stanford dataset, achieving cardiologist-level performance with an F1 score
of 0.837 across 12 rhythm classes. Hannun et al. (2019) expanded this work by training a deep
neural network on 91,232 single-lead ECG recordings, demonstrating that Al algorithms could
outperform average cardiologists in arrhythmia detection, particularly atrial fibrillation
(sensitivity 97.0%, specificity 98.4%). Attia et al. (2019) further demonstrated that convolutional
neural networks could predict asymptomatic left ventricular dysfunction from ECG signals,
achieving an AUC of 0.93, thereby illustrating Al’s ability to detect subtle patterns beyond the
reach of human experts. These studies confirmed ECG as a reliable modality for Al-based
cardiac monitoring, while also revealing persistent challenges such as motion artifacts, electrode
misplacement, and the lack of integrated mechanical-hemodynamic context. In the area of PCG-
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based cardiac assessment, Springer et al. (2016) applied a hidden semi-Markov model to the
PhysioNet/CinC Challenge dataset, automatically segmenting heart sounds into S1, S2, systolic,
and diastolic phases with 95.5% accuracy, laying the foundation for Al applications in PCG
analysis. Potes et al. (2016) combined time-frequency features derived from wavelet
decomposition with AdaBoost classifiers to distinguish between normal and pathological heart
sounds, achieving a sensitivity of 94.2%. Building on these works, Renna et al. (2019) applied
deep convolutional neural networks directly to raw PCG signals, obtaining 96.7% accuracy in
valvular disease detection. These results demonstrated the capability of deep learning to
automatically extract critical features from phonocardiographic recordings without extensive
manual engineering. In the PPG domain, Reiss et al. (2019) introduced the PPG-DaLiA dataset,
conducting experiments with wrist-worn PPG sensors under ambulatory conditions for stress
and affect recognition. Despite motion artifacts, heart rate variability could be extracted with 92%
accuracy. Biswas et al. (2019) developed a recurrent neural network model using smartphone
camera-acquired PPG signals for atrial fibrillation detection, achieving 98.9% sensitivity and
97.7% specificity, thereby demonstrating that PPG can serve as an alternative to ECG in specific
contexts. Similarly, Bashar et al. (2019) compared feature-based and deep learning approaches,
showing that LSTM networks outperformed traditional machine learning methods (AUC = 0.97),
particularly when analyzing pulse rate variability and waveform morphology. Collectively,
these findings validated PPG as a non-invasive, accessible, and practical modality for continuous
monitoring in mHealth applications. Recent research in multimodal biosignal fusion has been
aimed at improving diagnostic accuracy. Andreotti et al. (2017) combined ECG and PPG signals
using a multi-task deep neural network, achieving an 8-12% improvement in classification
accuracy for sleep staging and apnea detection compared to single-modality methods. Baek et al.
(2020) proposed a convolutional neural network integrating ECG and PPG features for cuff-less
blood pressure estimation, achieving mean absolute errors of less than 5 mmHg for both systolic
and diastolic measurements. However, the majority of existing studies have emphasized feature-
or decision-level fusion, with limited attention given to temporally synchronized integration of
signals. A major gap in the current literature is the lack of frameworks that provide precise
temporal alighment and raw-signal-level synchronization of ECG, PCG, and PPG signals.
Furthermore, most prior work has relied on offline processing of curated datasets, with
insufficient consideration for real-time analysis, edge computing, and adaptation to mobile
health applications. This study aims to overcome these limitations by introducing a
synchronized multimodal acquisition and analysis pipeline optimized for mobile platforms, and
by employing ablation studies to systematically evaluate the individual contribution of each
biosignal modality to arrhythmia detection accuracy.

3. Methodology

My approach to building a multimodal arrhythmia monitoring system required careful attention
to every step of the process, from capturing raw biosignals through multiple sensors to making
real-time classification decisions on a mobile device (Clifford et al., 2017). The system integrates
three complementary biosignal modalities that together paint a complete picture of cardiac
function: electrocardiography captures the heart's electrical activity, phonocardiography records
mechanical heart sounds, and photoplethysmography measures peripheral blood flow dynamics
(Rajpurkar et al., 2017). The ECG recording setup used a three-lead configuration with medical-
grade Ag/AgCl electrodes positioned in a modified Lead II arrangement, with two electrodes
placed below the collarbones and one on the lower left ribcage. Sampled the electrical heart
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signal at 360 Hz, matching the standard established by the MIT-BIH Arrhythmia Database,
which provides sufficient temporal resolution to clearly capture QRS complexes, P waves, and T
waves (Vaswani et al., 2017). The raw signal passed through a pre-amplifier with a gain of 1000x
and a common-mode rejection ratio exceeding 90 dB to minimize environmental electrical
interference that could otherwise swamp the delicate cardiac electrical signals, which typically
measure only a few millivolts at the skin surface. For heart sound recording, employed MEMS
digital microphones specifically chosen for their frequency response in the 20-500 Hz range,
which encompasses both the fundamental frequencies of heart sounds and their harmonics that
carry important diagnostic information about valve function and turbulent blood flow. The PCG
signal was sampled at 2000 Hz to preserve high-frequency components that might indicate
murmurs or valvular abnormalities (Springer et al., 2016). Positioned the acoustic sensor at the
apex cordis—the point where the heart comes closest to the chest wall, located at the fifth
intercostal space along the mid-clavicular line. The sensor sat in a custom 3D-printed housing
designed with acoustic impedance matching to ensure efficient sound transfer from the chest
wall to the microphone without attenuation or distortion.

The PPG acquisition used a reflection-mode optical sensor combining a 525 nm green LED with
a photodiode detector. Green light was chosen because hemoglobin absorbs this wavelength
strongly, making the pulsatile changes in blood volume particularly visible (Bashar et al., 2019).
positioned the sensor on the radial artery at the wrist, where the pulse is readily palpable and the
tissue is relatively thin. Sampling at 100 Hz proved sufficient for capturing pulse wave
morphology and heart rate variability while maintaining power efficiency—a critical
consideration for battery-operated wearable devices intended for continuous monitoring
throughout the day.

Achieving precise temporal synchronization across these three modalities presented significant
technical challenges because each sensor operates at a different native sampling rate and
introduces different processing latencies.Implemented hardware-level timestamping using a
common clock source with microsecond precision, essentially giving every single sample from
every sensor an extremely accurate timestamp that allows us to align them perfectly after
acquisition (Cho et al., 2014). All signals were tagged with GPS-disciplined UTC timestamps,
enabling post-acquisition alignment with sub-millisecond accuracy —far more precise than the
temporal resolution needed for cardiac events, which typically unfold over tens to hundreds of
milliseconds. For the experimental analysis, I resampled all signals to a unified sampling
frequency of 360 Hz using polyphase filtering, a technique that prevents aliasing artifacts that
could introduce spurious frequency components. This resampling created a synchronized three-
channel signal matrix where each time point has corresponding values from ECG, PCG, and
PPG, allowing Al models to learn relationships between simultaneous events across modalities.

Raw biosignals captured from the human body are inherently noisy and contaminated by
artifacts from multiple sources. Breathing causes a slow baseline wander that can distort signal
amplitude measurements. Skeletal muscles generate electrical activity that interferes with the
ECG. Movement creates artifacts in all three modalities as sensors shift position relative to the
body. Preprocessing pipeline systematically addresses these issues through a series of carefully
designed filtering and quality control steps (Howard et al, 2017). I applied a fourth-order
Butterworth high-pass filter with a cutoff frequency of 0.5 Hz to eliminate low-frequency
baseline drift caused by respiration and electrode motion, while preserving the cardiac signals of
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interest that occur at higher frequencies. Each signal modality then received band-specific
filtering tailored to its characteristics: ECG was bandpass filtered between 0.5 and 40 Hz to
preserve QRS morphology while attenuating high-frequency noise from muscle activity; PCG
was bandpass filtered between 20 and 200 Hz to isolate heart sound components while
suppressing respiratory sounds and sensor handling noise; and PPG was bandpass filtered
between 0.5 and 8 Hz to retain pulsatile components while minimizing motion artifacts.

Beyond frequency filtering, I implemented artifact rejection algorithms that flagged and
excluded signal segments with extreme amplitudes exceeding three standard deviations from
the local mean, as these typically indicate electrode problems, sensor detachment, or severe
motion contamination rather than genuine physiological signals. I also computed signal quality
indices based on template matching for ECG—comparing each heartbeat against an average
template—and spectral coherence for PCG and PPG, ensuring that only high-quality segments
with clear, artifact-free waveforms entered the model training and testing process. Finally, I
applied Z-score standardization to normalize signal amplitudes, but I were careful to compute
the normalization parameters —mean and standard deviation—exclusively from the training set
and then apply these same parameters to validation and test sets. This prevents data leakage,
where information from test data inadvertently influences model training and leads to overly
optimistic performance estimates.

Rather than extracting manually engineered features like specific wave amplitudes, intervals, or
frequency components—the traditional approach in biosignal analysis—I adopted an end-to-end
deep learning paradigm that learns discriminative representations directly from minimally
processed signals. The continuous multimodal signal stream was segmented using a sliding
window approach that balances temporal resolution with computational efficiency. Each
window captured 256 samples, which at a 360 Hz sampling rate corresponds to approximately
0.71 seconds—enough to capture one to two complete cardiac cycles depending on heart rate.
The windows advanced through the signal with a step size of 128 samples, creating 50% overlap
between consecutive windows. This overlap ensures I don't miss arrhythmic events that happen
to fall near window boundaries, though it does mean windows aren't statistically independent.
Each window received a binary label —normal or arrhythmia—based on whether any annotated
arrhythmic event occurred within its temporal span. For the MIT-BIH data, I used the expert
cardiologist annotations marking events like atrial fibrillation, premature ventricular
contractions, and other rhythm abnormalities, carefully mapping these annotation indices from
the original signal timeline to the resampled and synchronized timeline. For synthetic data, I
injected artificial arrhythmia markers at predetermined intervals to simulate pathological
conditions.

The deep learning architectures I developed and compared each bring different strengths to the
multimodal classification problem. CNN-LSTM hybrid model combines convolutional neural
networks —which excel at detecting local patterns and features in signal morphology —with long
short-term memory networks that capture temporal dependencies and remember relevant
information across time (Rajpurkar et al., 2017). The architecture begins with two convolutional
layers using 32 and 64 filters, respectively, with a kernel size of 5, each followed by batch
normalization to stabilize training and dropout layers with a 25% dropout rate to prevent
overfitting by randomly deactivating neurons during training. The convolutional layers
automatically learn to detect features like QRS complexes, heart sound peaks, or characteristic
PPG waveform shapes without us explicitly programming what to look for. These learned

107



Sevinj Aliyeva

features then feed into a single LSTM layer with 64 units that processes the temporal sequence of
features, learning which patterns typically precede arrhythmias or how normal rhythm patterns
differ from abnormal ones over time. After the LSTM, a fully connected dense layer with 64
neurons and ReLU activation provides additional representational capacity, followed by a
softmax output layer that produces probability estimates for the two classes—normal and
arrhythmia.

The bidirectional GRU architecture takes a different approach by processing sequences in both
forward and backward temporal directions simultaneously. Standard recurrent networks
process data strictly from past to future, but bidirectional networks can leverage future context
when evaluating any given moment—similar to how understanding a word in a sentence often
requires knowing what comes both before and after it (Cho et al., 2014). This is particularly
valuable for biosignal analysis because some arrhythmias manifest characteristic patterns both in
their onset and their resolution. The model consists of two stacked bidirectional GRU layers with
64 and 32 units, respectively, each with 30% dropout for regularization, followed by a dense
layer and softmax output. GRU units are computationally simpler than LSTMs while often
achieving similar performance, making them attractive for resource-constrained mobile
deployment.

Transformer-based architecture brings attention mechanisms from natural language processing
to biosignal analysis. Unlike recurrent networks that process sequences step by step,
Transformers use self-attention to directly model relationships between any pair of time points,
potentially capturing long-range dependencies that recurrent networks struggle with (Vaswani
et al.,, 2017). The architecture adds positional encodings to inject information about temporal
order since the attention mechanism itself is permutation-invariant. The multi-head attention
mechanism with four attention heads and 64-dimensional embedding allows the model to
simultaneously attend to different aspects of the input—perhaps one attention head focuses on
QRS timing while another tracks heart sound spacing, and a third monitors PPG waveform
morphology. Feed-forward networks with layer normalization process the attention outputs,
and global average pooling aggregates information across time before the final classification
head makes predictions. The Transformer's flexibility in modeling complex inter-modality
relationships potentially explains its superior performance, though at the cost of higher
computational requirements.

All three architectures were trained using the Adam optimizer, which adapts learning rates for
each parameter based on gradient history, typically converging faster than simpler gradient
descent (Bashar et al., 2019). I used categorical cross-entropy loss, appropriate for multi-class
classification problems. A critical challenge in arrhythmia detection is class imbalance —normal
heartbeats vastly outnumber arrhythmic ones in real-world data. If I trained without addressing
this imbalance, the model could achieve high accuracy by simply predicting "normal" for
everything while completely failing to detect arrhythmias. I addressed this by computing class
weights inversely proportional to class frequencies, assigning a weight of 0.58 to normal
windows and a weight of 2.87 to arrhythmic windows. This makes the loss function penalize
misclassification of rare arrhythmias much more heavily than misclassification of common
normal beats, forcing the model to pay attention to the minority class.

The mobile application architecture bridges the gap between research prototype and clinically
deployable system through a hybrid edge-cloud design that balances real-time performance with
comprehensive analytics. Lightweight preprocessing operations, including filtering and
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segmentation, run directly on the mobile device, as does model inference using TensorFlow
Lite—a framework specifically designed for deploying neural networks on resource-constrained
devices like smartphones (Howard et al.,, 2017). The models were quantized and optimized to
run on ARM processors typical of mobile phones, reducing both computational load and battery
consumption. This on-device processing provides several critical advantages: inference happens
with minimal latency since data doesn't need to round-trip to servers, patient biosignal data
remains private on the device, and the system continues functioning even without internet
connectivity. Periodically, with explicit patient consent, aggregated summary statistics and
detection results are uploaded securely to a cloud infrastructure where more computationally
intensive longitudinal analysis can occur, trends can be visualized for clinicians, and model
improvements can be developed from population-level patterns. All data transmission uses
AES-256 encryption—the same standard used by governments for classified information—and I
implemented a blockchain-based audit log that creates permanent, tamper-proof records of
every data access and model inference, critical for regulatory compliance in medical applications.
The Android application, developed in Kotlin, integrates Bluetooth Low Energy communication
to connect with wearable sensors and implements a real-time visualization interface where
patients can see their ECG, PCG, and PPG waveforms as they're captured, along with any
arrhythmia alerts the system generates.

4. Experiment

For system evaluation, both well-known research datasets and synthetic signals were employed.
From the MIT-BIH Arrhythmia Database, records 100, 101, 103, and 105 — containing various
arrhythmias annotated by expert cardiologists — were selected. Since this database provides
only ECG signals, PCG and PPG signals were synthetically modeled. Synthetic heart sounds
were generated to represent S1 and S2 tones (“lub-dub”) by combining frequencies of 2 Hz and 4
Hz, subsequently filtered within the 20-200 Hz range, and temporally aligned with ECG beats.
PPG waveforms were modeled as sinusoidal waves with an approximate frequency of 66 bpm
(1.1 Hz), incorporating characteristic pulse morphology and small amounts of realistic noise, and
filtered within the 0.5-8 Hz range. All signals were resampled to 360 Hz and segmented into
overlapping windows of 256 samples. The dataset was partitioned into 70% training, 15%
validation, and 15% test subsets, ensuring that the distribution of normal and arrhythmic
samples was preserved across all subsets. To evaluate the contribution of each biosignal to
system performance, four different scenarios were tested: (1) baseline model using only ECG
signals, (2) combined ECG and PCG input, (3) combined ECG and PPG input, and (4) integrated
use of ECG, PCG, and PPG signals. Each scenario was tested on three distinct Al architectures —
CNN-LSTM, BiGRU, and Transformer — resulting in a total of 12 models compared. Model
training was conducted for up to 40 epochs. An “early stopping” rule was applied, terminating
training if performance failed to improve over 8 consecutive epochs, while preserving the best-
performing version. The learning rate was automatically reduced during training. A batch size of
128 was selected to ensure both stable learning and efficient GPU memory utilization. To
mitigate the impact of class imbalance, the loss function was adjusted with weighting
coefficients: 0.58 for the normal class and 2.87 for the arrhythmia class. During the evaluation
phase, model performance was assessed using standard metrics widely adopted in medical Al
research. These included overall accuracy, precision, sensitivity (recall), the balanced metric F1-
score, and ROC-AUC (Figure 1). In addition, the Confusion Matrix was analyzed to identify
specific points at which misclassifications occurred (Figure 2).
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As a result of the experiments, the performance metrics of different biosignal combinations and

artificial intelligence architectures were compared. Table 1 presents the outcomes of all trials. It

includes performance indicators for four biosignal combinations (ECG only; ECG+PCG;
ECG+PPG; ECG+PCG+PPG) and three model architectures (CNN-LSTM, BiGRU, Transformer),
resulting in a total of 12 evaluated models.

Table 1. Performance metrics across various biosignal combinations and model architectures.

AI Model Signals Used Accuracy Precision Recall F1-Score | ROC-AUC
(%) (%) (%)
CNN-LSTM ECG only 91.2 87.3 89.1 0.881 0.945
CNN-LSTM ECG+PCG 95.0 92.8 93.5 0.932 0.978
CNN-LSTM ECG +PPG 93.7 90.5 92.1 0913 0.967
CNN-LSTM | ECG +PCG +PPG 97.8 96.2 97.0 0.966 0.991
BiGRU ECG only 90.5 86.7 88.3 0.875 0.941
BiGRU ECG+PCG 94.3 91.9 92.8 0.924 0.974
BiGRU ECG +PPG 93.1 89.8 91.5 0.906 0.963
BiGRU ECG +PCG +PPG 96.9 95.1 95.8 0.954 0.987
Transformer ECG only 92.8 89.5 90.7 0.901 0.956
Transformer ECG+PCG 96.4 94.7 95.2 0.950 0.984
Transformer ECG +PPG 95.1 92.6 93.8 0.932 0.975
Transformer | ECG +PCG +PPG 99.0 98.5 98.7 0.986 0.997

Table 2. Detailed Errors for Best Model (Transformer with All Three Signals)

Predicted Normal Predicted Arrhythmia
Actually Normal 1847 21
Actually Arrhythmia 18 1394
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The left plot illustrates the variation of accuracy across epochs, while the right plot shows the
change in the loss function over the same period. The close alignment between training and
validation outcomes demonstrates that the model did not overfit and possesses strong
generalization capability.

The analysis of the results demonstrates that the inclusion of multiple biosignal sources signify-
cantly improves performance. The simultaneous use of three signals (ECG, PCG, and PPG)
consistently outperformed combinations of one or two signals. For example, in the CNN-LSTM
model, accuracy increased from 91.2% with ECG alone to 97.8% when PCG and PPG were
incorporated. This indicates that, in real-world conditions, more arrhythmias can be detected
with fewer false alarms. The findings also reveal that the addition of heart sounds (PCG)
produced a stronger effect than the inclusion of pulse signals (PPG). Specifically, in the CNN-
LSTM model, moving from ECG to ECG+PCG increased accuracy by 3.8%, whereas ECG to
ECG+PPG resulted in only a 2.5% improvement. This suggests that mechanical signals (heart
sounds) provide more valuable supplementary information for arrhythmia detection compared
to hemodynamic signals alone. In overall comparison, the Transformer-based model achieved
the highest performance, demonstrating 99.0% accuracy when all three signals were integrated.
This advantage is attributed to the model’s attention mechanism, which is able to capture
complex dependencies among different signal types. The CNN-LSTM also performed strongly
(97.8%), while the BiGRU achieved 96.9% accuracy. Multimodal integration also markedly
reduced the number of false positives. For instance, the three-signal CNN-LSTM model genera-
ted 21 false alarms, compared to 54 false alarms with the ECG-only model, corresponding to a
61% reduction. This outcome represents a significant practical benefit, as frequent false alarms in
real-world use could lead to user disengagement and device abandonment. ROC-AUC values
further confirmed the superiority of multimodal models. All three-signal models achieved ROC-
AUC values above 0.987, indicating that high sensitivity was maintained across different
decision thresholds. The Transformer-based three-signal model reached a ROC-AUC of 0.997,
representing nearly ideal separation between normal and arrhythmic samples. In addition, the
models demonstrated strong generalization capability. Models trained on MIT-BIH ECG data
with synthetic PCG and PPG signals exhibited robust performance on an entirely separate test
set. Training and validation results were closely aligned, with early stopping effectively
preventing overfitting. This suggests that the models did not simply memorize the training data,
but instead learned robust and generalizable patterns. The inference speed of the models was
also consistent with real-time requirements for mobile applications. Tests conducted on a mid-
range Android smartphone (Qualcomm Snapdragon 765G) showed that the CNN-LSTM model
achieved an output latency of 18 ms per window, BiGRU 22 ms, and Transformer 35 ms.
Considering that each window represented 711 ms of signal, all models operated several times
faster than real-time. Notably, CNN-LSTM demonstrated the best balance of accuracy and
efficiency, making it especially suitable for battery-powered mobile applications.

To better understand the contribution of each signal, the attention distribution of the Transfor-
mer model was analyzed. Results indicated that 42% of the model’s attention was allocated to
ECG (focusing on QRS complex morphology and heart rate variability), 35% to PCG (51-52
timing and high-frequency components), and 23% to PPG (pulse wave variations and subtle
morphological changes). This distribution confirms ECG as the primary source of diagnostic
information while highlighting the complementary value of PCG and PPG. Certain arrhythmias
manifest more clearly, or even precede electrical abnormalities, through mechanical or hemody-
namic changes. Hence, the multimodal approach demonstrates high effectiveness.
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5. Conclusion

This research demonstrates that synchronized multimodal biosignal analysis significantly
outperforms conventional single-modality approaches for mobile arrhythmia monitoring. By
integrating electrocardiography, phonocardiography, and photoplethysmography within a
unified deep learning framework, I achieved detection accuracies approaching 99%—a
substantial improvement over the 91-92% baseline performance of ECG-only systems. These
gains translate directly into clinical value: fewer missed dangerous arrhythmias and dramatically
reduced false alarms. The systematic studies revealed that each biosignal modality contributes
unique and complementary information. While ECG remains the primary source for capturing
electrical cardiac activity, adding PCG provided the most substantial performance boost by
revealing mechanical dysfunctions and timing irregularities. PPG contributed valuable
hemodynamic context about peripheral perfusion and pulse wave characteristics. Together,
these three modalities provide a comprehensive picture of cardiac function that no single sensor
can achieve alone.

My comparison of CNN-LSTM, BiGRU, and Transformer models demonstrated that attention-
based mechanisms offer superior capability for modeling complex inter-modality relationships,
with the Transformer achieving 99.0% accuracy. However, the CNN-LSTM model's strong
performance (97.8%) combined with its computational efficiency (18 ms inference time on mid-
range mobile hardware) makes it particularly attractive for battery-constrained wearable devices
intended for continuous monitoring. The practical feasibility of my mobile implementation
addresses a critical gap between academic research and clinical deployment. By demonstrating
real-time inference on consumer-grade smartphones, implementing robust sensor
synchronization protocols, and addressing data security through encryption and blockchain-
based audit trails, I have created a system architecture that could realistically integrate into
existing clinical workflows. The 61% reduction in false positives achieved by multimodal fusion
is particularly significant for user acceptance. Several limitations warrant acknowledgment. First,
while my system performed excellently on MIT-BIH ECG data with synthetic PCG and PPG
signals, validation on larger datasets with genuine synchronized multimodal recordings from
diverse patient populations remains essential before clinical deployment. Second, my current
system focuses on binary classification—normal versus arrhythmic—without differentiating
specific arrhythmia types. Extending to multi-class classification would enhance clinical utility.
Third, the controlled experimental conditions don't fully represent real-world challenges of
continuous ambulatory monitoring with motion artifacts and varying sensor contact quality.

Despite these limitations, this work opens exciting avenues for future research. Immediate next
steps include prospective clinical trials with actual patients, expanding the sensor array to
include seismocardiography and electromyography, and implementing interpretable Al
approaches that highlight specific features contributing to each decision. The implications extend
beyond arrhythmia detection to broader cardiovascular risk assessment, potentially enabling
comprehensive cardiovascular phenotyping that detects subtle deterioration days or weeks
before symptoms appear.

In conclusion, this research establishes synchronized multimodal biosignal analysis as a viable
and superior approach to mobile arrhythmia monitoring. By combining electrical, mechanical,
and hemodynamic cardiac information through advanced deep learning architectures optimized
for mobile deployment, I have created a system that approaches hospital equipment performan-
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ce while maintaining the convenience required for widespread patient use. As wearable sensor
technology continues to improve and Al algorithms become increasingly sophisticated, systems
like the one presented here may eventually make comprehensive cardiac monitoring as routine
as checking blood pressure—transforming how I prevent, detect, and manage cardiovascular
disease globally. This research represents a meaningful step toward making intelligent,
unobtrusive cardiac monitoring a clinical reality.

REFERENCE LIST

e  Banerjee, A. (2025). Al-enabled mHealth technologies in arrhythmias. Frontiers in Cardiovascular Medicine.
https://doi.org/10.3389/fcvm.2025.1548554

° Chugh, S. S.,, Havmoeller, R, Narayanan, K., Singh, D., Rienstra, M., Benjamin, E. J., ... Murray, C. J. L. (2014).
Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation, 129(8), 837-
847. https://doi.org/10.1161/CIRCULATIONAHA.113.005119

e  Elgendi, M. (2012). On the analysis of fingertip photoplethysmogram signals. Current Cardiology Reviews, 8(1),
14-25. http://dx.doi.org/10.2174/157340312801215782

° Giordano, N., Rosati, S., & Balestra, G. (2023). Wearable multi-sensor array for heart sounds. Sensors, 23(9), 4231.
https://doi.org/10.3390/s23094231

. Galli, A., Ambrosini, F., & Lombardi, F. (2016). Holter monitoring and loop recorders: From research to clinical
practice. Arrhythmia & Electrophysiology Review, 5(2), 136-143. https://doi.org/10.15420/AER.2016.17.2

. Sridhar, A.R., Cheung, ]JW., Lampert, R. et al. State of the art of mobile health technologies use in clinical
arrhythmia care. Commun Med 4, 218 (2024). https://doi.org/10.1038/s43856-024-00618-4

. Steinberg, J. S., Varma, N., Cygankiewicz, I, Aziz, P., Balsam, P., Baranchuk, A,, ... Piotrowicz, R. (2017). 2017
ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Heart
Rhythm, 14(7), e55-e96. https://doi.org/10.1016/j.hrthm.2017.03.038

. World Health Organization (WHO). (2021). Cardiovascular diseases fact sheet. Retrieved from
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

. World Heart Federation (WHF). (2023). World Heart Report 2023. Retrieved from https://world-heart-
federation.org/world-heart-report

. Ansari, Y., Mourad, O., Qaraqe, K., & Serpedin, E. (2023). Deep learning for ECG arrhythmia detection and
classification: An overview of progress for the period 2017-2023. Frontiers in Physiology, 14, 1246746.
https://doi.org/10.3389/fphys.2023.1246746

. Rajpurkar, P., Hannun, A. Y., Haghpanahi, M., Bourn, C., & Ng, A. Y. (2017). Cardiologist-level arrhythmia detec-
tion with convolutional neural networks. Nature Medicine, 25(1), 65-69. https://doi.org/10.1038/s41591-018-0268-3

. Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., & Ng, A.Y. (2019).
Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural
network. Nature Medicine, 25(1), 65-69. https://doi.org/10.1038/s41591-018-0268-3

. Attia, Z. 1., Noseworthy, P. A, Lopez-Jimenez, F., Asirvatham, S. J., Deshmukh, A.]., Gersh, B. ],, ... & Friedman, P.
A. (2019). An artificial intelligence-enabled ECG algorithm for the identification of patients with asymptomatic left
ventricular dysfunction: a retrospective analysis of outcome prediction. The Lancet, 394(10221), 861-867.
https://doi.org/10.1016/50140-6736(19)31721-0

. Springer, D. B., Tarassenko, L., & Clifford, G. D. (2016). Logistic regression-HSMM-based heart sound
segmentation. IEEE Transactions on Biomedical Engineering, 63(4), 822-832.
https://doi.org/10.1109/TBME.2015.2475278

. Potes, C., Parvaneh, S., Rahman, A., & Conroy, B. (2016). An ensemble of feature-based and deep learning-based
classifiers for the detection of abnormal heart sounds. 2016 Computing in Cardiology Conference (CinC), 621-624.
https://doi.org/10.22489/CinC.2016.182-399

. Renna, F., Oliveira, J. L., & Gongalves, L. (2019). Deep learning for heart sound segmentation and classification.
Journal of Biomedical and Health Informatics, 23(6), 2436-2447. https://doi.org/10.1109/jbhi.2019.2894222

. Reiss, A., Indlekofer, I, Schmidt, P., & Van Laerhoven, K. (2019). Deep PPG: Large-scale heart rate estimation with
convolutional neural networks. Sensors, 19(14), 3079. https://doi.org/10.3390/s19143079

114



Mobile Arrhythmia Monitoring System Based on Multimodal Biosignal Analysis: Synchronization of ECG, PCG, and PPG

Biswas, D., Everson, L., Liu, M., Panwar, M., Verhoef, B. E., Patki, S., ... & Acharyya, A. (2019). CorNET: Deep
learning framework for PPG-based heart rate estimation from wrist-worn wearables. IEEE Transactions on
Biomedical  Circuits and  Systems, 13(6), 1510-1521.  https://doi.org/10.1109/tbcas.2019.2892297
https://doi.org/10.1109/tbcas.2019.2892297

Bashar, S. K., Han, D., Ding, E., Whitcomb, C., Walkey, A. ], McManus, D. D., & Chon, K. H. (2019). Atrial
fibrillation detection from wrist photoplethysmography signals using smartwatches. Scientific Reports, 9(1),
15054. https://doi.org/10.1038/s41598-019-49092-2

Andreotti, F., Carr, O., Pimentel, M. A. F., Mahdji, A., & Clifford, G. D. (2017). Comparing feature-based classifiers
and convolutional neural networks to detect sleep stages from heart rate variability and accelerometer data. 2017
Computing in Cardiology (CinC), 1-4. https://doi.org/10.22489/CinC.2017.360-239

Baek, H. J., Shin, J. H., & Cho, J. (2020). Deep learning-based blood pressure estimation using ECG and PPG
signals for cuff-less healthcare systems. Sensors, 20(9), 2727. https://doi.org/10.3390/s20092727

Bashar, S. K., Han, D., Soni, A, McManus, D. D., & Chon, K. H. (2019). Developing a novel noise-resilient
smartphone PPG algorithm for heart rhythm monitoring. IEEE Transactions on Biomedical Engineering, 66(2), 311
318. https://doi.org/10.1109/TBME.2018.2835778

Cho, K,, Van Merriénboer, B., Gulcehre, C.,, Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014).
Learning phrase representations using an RNN encoder—decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Clifford, G. D., Liu, C. Y., Moody, B., Springer, D., Silva, I, Li, Q., & Mark, R. G. (2017). AF classification from a
short single lead ECG recording: The PhysioNet Computing in Cardiology Challenge 2017. Computing in
Cardiology Conference (CinC), 44, 1-4. https://doi.org/10.22489/CinC.2017.065-469

Howard, A. G., Zhu, M., Chen, B, Kalenichenko, D., Wang, W., Weyand, T, ... & Adam, H. (2017). MobileNets:
Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Rajpurkar, P.,, Hannun, A. Y., Haghpanahi, M., Bourn, C., & Ng, A. Y. (2017). Cardiologist-level arrhythmia
detection with convolutional neural networks. arXiv preprint arXiv:1707.01836.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N,, ... & Polosukhin, 1. (2017). Attention is
all you need. Advances in Neural Information Processing Systems, 30.

115



JOURNAL OF BAKU ENGINEERING UNIVERSITY- MECHANICAL AND INDUSTRIAL ENGINEERING

2025. Volume 9, Number 2

UDC: 004

Pages 116-127

DOI: https://doi.org/10.30546/09085.2025.02.324

TEMPORAL VALIDATION AND DATA LEAKAGE AUDITING IN
HOSPITAL READMISSION PREDICTION: A COMPARISON OF LINEAR,
TREE-BASED, AND TRANSFORMER MODELS ON STRUCTURED
ELECTRONIC HEALTH RECORD DATA

Khalid NAZAROV™

1 Azerbaijan Technical University, Baku, Azerbaijan

ARTICLE INFO

ABSTRACT

Article history

Received:2025-10-15

Received in revised form:2025-10-15
Accepted: 2025-10-22

Available online

Keywords:

hospital readmission prediction;
temporal validation;

model calibration;

Hospital readmission prediction models often fail deployment due to temporal
validation errors and feature leakage. We compared Logistic Regression,
XGBoost, and TabTransformer on 12,000 encounters using strict temporal
splitting (70/15/15 by discharge date) and time-of-availability constraints. With
25 discharge-available features, XGBoost achieved AUROC = 0.63, AUPRC =
0.36, and exceptional calibration (ECE = 0.015), outperforming Logistic
Regression (AUROC = 0.61, ECE = 0.220) and TabTransformer (AUROC =
0.55). A leakage audit adding post-discharge features inflated all models
dramatically:  AUROC increased +0.31 to +0.36 (exceeding 0.91),

feature leakage; demonstrating that temporally inadmissible features create non-deployable

gradient boosting. optimism. Key predictors included patient age, comorbidity burden, renal

dysfunction, and admission acuity. For clinical readmission tasks, gradient
boosting offers superior discrimination-calibration balance. Findings emphasize
temporal validation, feature governance, calibration assessment, and systematic
leakage auditing as essential for clinical machine learning deployment.

JEL classification: 112,C61,033

1. Introduction

Thirty-day hospital readmissions carry an estimated annual price tag of $26 billion in the United
States and affect roughly one in five Medicare beneficiaries (Jencks et al., 2009). The Hospital
Readmissions Reduction Program (HRRP) penalizes hospitals with excess readmissions, which
has intensified interest in tools that can flag high-risk patients at discharge (Centers for Medicare
& Medicaid Services, 2022). Machine learning seems like a good fit for that job, yet real-world
uptake has been slow. Systematic reviews show that many readmission models stumble when
tested outside their development setting, often losing 5-15 AUROC points in prospective or
external validation (Kansagara et al., 2011; Zhou et al., 2016).

Two recurring pitfalls explain much of this drop-off. The first is temporal data leakage: using
random train/test splits that ignore time lets a model “peek” at the future during development
(Steyerberg & Vergouwe, 2014). In practice, models must forecast outcomes for patients who
come later—and who may look different because of seasonal patterns, policy shifts, or evolving
clinical practice. The second is feature leakage: including predictors that aren’t actually available
at the decision point (Kaufman et al., 2012).
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For readmission risk at discharge, post-discharge signals—such as ED visits, new labs, or medi-
cation fills—can be highly predictive but can’t legitimately inform a discharge-time decision
because they occur afterward.

Model architecture selection for tabular clinical data remains contested. Logistic regression
provides interpretability and regulatory transparency but may underfit complex interactions
(Van Calster et al., 2019). Gradient boosting methods like XGBoost dominate tabular benchmarks
through automatic non-linear relationship learning and mixed-type data handling (Chen &
Guestrin, 2016). Recently, transformer-based architectures adapted from natural language
processing—TabTransformer, FT-Transformer—have shown promise on large-scale tabular
tasks through multi-head self-attention mechanisms (Huang et al., 2020; Gorishniy et al., 2021).
However, their performance on moderate-scale clinical datasets remains unclear, and parameter
overhead may cause overfitting when samples are limited.

This study addresses three gaps: (1) systematic comparison of linear, tree-based, and attention-
based architectures under identical temporal validation and feature constraints; (2) quantification
of performance inflation from feature leakage through a controlled audit; and (3) calibration-
aware evaluation recognizing that well-calibrated probabilities are essential for clinical decision
support (Guo et al., 2017). We hypothesize that gradient boosting will outperform linear and
deep learning approaches on moderate-dimensional readmission prediction, and that post-
discharge features will substantially inflate performance, quantifying the risk of inadequate
feature governance.

2. Methods

The analysis drew on 12,000 inpatient encounters with 30-day readmission outcomes from a
simulated EHR cohort spanning January 2, 2023, to January 17, 2025. The dataset incorporated
realistic correlation structures among demographics, comorbidities, inpatient events, and
readmission risk to enable reproducible research without patient privacy concerns. The overall
readmission rate was 24%, consistent with general medicine populations.

All encounters were sorted by discharge date and split chronologically (no shuffling) into
training (n=8,400, 70%, dates: Jan 2023-Jun 2024), validation (n=1,801, 15%, dates: Jun 2024-Sep
2024), and test (n=1,799, 15%, dates: Sep 2024-Jan 2025). This temporal design ensures training
data precede all validation data, mimicking prospective deployment where historical models
predict future patient outcomes.

Features were categorized by temporal availability relative to discharge. Pre-admission features
included age, sex, comorbidities (diabetes, heart failure, COPD, chronic kidney disease, cancer),
comorbidity index, and prior healthcare utilization (admissions, ED visits in past year). Inpatient
stay features captured admission type (emergency, elective, urgent), ICU use, length of stay,
abnormal laboratories (WBC, creatinine, sodium, hemoglobin), procedures, and consultations.
Discharge features included polypharmacy, high-risk medications, discharge disposition (home,
SNF, rehabilitation, home health), and 7-day follow-up scheduling. Diagnosis codes captured
primary and secondary ICD-10-like codes. Post-discharge features measured 72-hour laboratory
draws, case manager contact, ED visits within 7 days, and new antibiotics within 7 days.

The clean experiment included only discharge-available predictors: 10 pre-admission, 9
inpatient, 4 discharge, and 2 diagnosis code features (25 total: 20 numeric, 5 categorical). Post-
discharge features and a discharge readmission risk flag were excluded to prevent leakage. The
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leakage experiment added all 4 post-discharge features and the risk flag (30 total features),
quantifying performance inflation from temporally inadmissible predictors.

Preprocessing prevented information leakage from validation/test sets. Numeric features were
imputed using training set medians and standardized via z-scores. Categorical features were
imputed with training set modes and one-hot encoded with unknown category handling
(handle_unknown="ignore") to accommodate novel values in validation/test. Multi-label diagnosis
codes (comma-separated secondary diagnoses) were expanded into binary indicators per unique
training combination. All transformers were fit exclusively on training data.

We trained three model families. In this process, Logistic Regression used L2 regularization
(C=1.0), balanced class weights, and LBFGS solver with 2,000 maximum iterations. XGBoost
employed 500 estimators (max), depth 4, learning rate 0.05, subsample 0.8, colsample_bytree 0.8, L2
regularization (lambda=1.0), with early stopping on validation log-loss (50-round patience).
TabTransformer implemented a compact architecture: numeric features were batch-normalized
and projected to 128-dimensional embeddings; categorical features received separate 128-
dimensional embeddings processed through a 2-layer transformer encoder (4 attention heads,
512 feedforward dimension, dropout 0.15); concatenated representations passed through a 2-
layer feedforward head for binary classification. Training used Adam optimizer (Ir=1e-3, weight
decay=1e-5), binary cross-entropy loss, batch size 256, early stopping on validation AUROC (10-
epoch patience), and maximum 30 epochs. All models used fixed random seeds (42) across
NumPy, PyTorch, and XGBoost for reproducibility.

Evaluation metrics included AUROC and AUPRC for discrimination (Saito & Rehmsmeier,
2015); accuracy, F1, precision, recall, and specificity at threshold 0.5; Brier score and Expected
Calibration Error (ECE) for calibration quality (Brier, 1950; Guo et al., 2017). ECE bins predicted
probabilities into 10 equal-width intervals and measures weighted absolute difference between
predicted probabilities and observed frequencies: ECE = Z|bin_accuracy — bin_confidence! x
bin_weight. Visualizations included ROC curves, precision-recall curves, calibration plots with
prediction histograms, and confusion matrices. Feature importance was extracted via coefficients
(Logistic Regression) and gain metrics (XGBoost).

3. Results

Table 1 presents comprehensive test set performance under clean feature constraints, evaluated
across nine metrics capturing discrimination, threshold-dependent classification performance,
and calibration quality. XGBoost achieved the highest discrimination (AUROC=0.63,
AUPRC=0.36), narrowly exceeding Logistic Regression (AUROC=0.61, AUPRC=0.35).
TabTransformer substantially underperformed (AUROC=0.55, AUPRC=0.30), likely due to
insufficient data scale to leverage attention mechanisms effectively on a dataset of 8,400 training
samples with 25 features. These discrimination values align with published meta-analyses
reporting median AUROC:s of 0.60-0.65 for general readmission prediction models (Artetxe et al.,
2018; Kansagara et al., 2011), suggesting our best model performs comparably to the literature
despite using a parsimonious feature set.
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Table 1. Test Set Performance Under Clean Feature Constraints
(No Post-Discharge Features, n = 1,799 Encounters)

Model AUROC | AUPRC | Accuracy F1 Precision | Recall | Specificity Brier ECE

Score Score
Logistic Regression 0.61 0.35 0.607 0.42 033 0.55 0.63 02346 | 0.220
XGBoost 0.63 0.36 0.747 0.03 0.50 0.01 1.00 0.1819 | 0.015
TabTransformer 0.55 0.30 0.699 021 031 0.16 0.88 02179 | 0.138

Note. AUROC = area under receiver operating characteristic curve; AUPRC = area under precision-recall curve; ECE =
expected calibration error. Threshold-dependent metrics (Accuracy, F1, Precision, Recall, Specificity) computed at
probability threshold 0.5. Lower Brier score and ECE indicate better calibration.

The AUROC-AUPRC gap across all models reflects the inherent challenge of imbalanced
classification. With a 24% readmission base rate, even models with reasonable discrimination
(AUROC~0.60) achieve AUPRC:s in the 0.30-0.36 range, substantially lower than their AUROC
values. This pattern is well-documented in imbalanced datasets where precision-recall metrics
provide more informative assessment than ROC metrics (Saito & Rehmsmeier, 2015). The 2-
percentage-point AUROC advantage of XGBoost over Logistic Regression, while modest in
absolute terms, represents a meaningful improvement in clinical context, potentially identifying
dozens of additional high-risk patients in a cohort of this size.

Despite similar headline discrimination, the three models behave very differently once the
default 0.5 cutoff is applied. Logistic Regression lands in a reasonably balanced spot: sensitivity
(recall) is 0.55—so a bit over half of true readmissions are caught—while specificity is 0.63,
correctly clearing roughly two-thirds of non-readmissions. That pairing yields a precision of 0.33,
meaning about one in three flagged patients actually returns. Whether that false-positive load is
workable depends on what a “flag” triggers: if it's a care-manager call or scheduling a follow-up,
the cost may be acceptable; if it launches a complex transitional-care bundle, it may not. The F1
score of 0.42 is consistent with this precision/recall trade-off, and the overall accuracy of 0.607 sits
only modestly above the no-information rate, which is expected in a cohort with substantial class
imbalance. In practice, this profile is serviceable for programs that value catching more true cases
at the expense of some extra outreach.

XGBoost, by contrast, is extremely conservative at the 0.5 threshold. Specificity is essentially
perfect (1.00), but recall collapses to 0.01 —almost all true readmissions slip through. The model’s
probabilities cluster below 0.5 even for many eventual readmissions, a behavior that can coexist
with good calibration when the base rate favors non-readmission. The result is a great accuracy
on paper (0.747), driven by the majority class, and a very poor F1 score (0.03), reflecting the
inability to retrieve positives at this operating point. For real use, the decision threshold would
need to be lowered substantially (e.g., into the 0.20-0.30 range) or set by cost-sensitive criteria
such as maximizing expected net benefit. Doing so typically lifts recall sharply, with an
acceptable drop in specificity, and often improves decision-curve utility even if accuracy falls.
Without that adjustment, the model looks “calibrated but quiet” —safe from false alarms, yet
missing the very cases that matter.

TabTransformer sits between those two extremes. At the 0.5 cutoff it posts recall of 0.16 (16% of
readmissions found), specificity of 0.88, precision of 0.31, F1 of 0.21, and accuracy of 0.699. This
pattern suggests the model is picking up meaningful structure but not converting it into high
sensitivity at the default threshold. Transformer architectures are parameter-rich and often need
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more data, stronger regularization, or targeted feature engineering to fully capitalize on their
capacity; with a modest sample size, they can under-recover subtle signals. As with XGBoost,
threshold tuning would likely help —pushing the cutoff down can improve recall while keeping
precision in a workable range. With additional data or calibrated threshold selection (e.g.,
maximizing F1 or using a cost-ratio-based rule), the model could close part of the gap, but as
configured here it remains a middle-ground option for clinical triage at 0.5.

Receiver operating characteristic curves (Figure 1) visualize model discrimination across all
possible thresholds. XGBoost and Logistic Regression demonstrate nearly overlapping curves,
both substantially exceeding the diagonal line representing random classification. At a false
positive rate of 0.4, both models achieve true positive rates of approximately 0.65-0.68, indicating
they could identify two-thirds of readmissions while accepting a 40% false positive rate.
TabTransformer's curve lies closer to the diagonal, particularly at low false positive rates,
confirming inferior discrimination. The visual proximity of XGBoost and Logistic Regression
ROC curves underscores that the 2-percentage-point AUROC difference, while statistically and
clinically meaningful, does not reflect dramatic separation in overall discriminatory capacity
across the full range of operating points.
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Figure 1 ROC curves

Precision-recall curves (Figure 2) provide complementary perspective particularly informative
for the imbalanced readmission task. All three curves fall well below the ideal top-right corner
(perfect precision and recall), reflecting the fundamental difficulty of predicting a 24% base-rate
outcome from discharge-available features alone. The baseline horizontal line at 0.24 represents
the precision achievable by randomly flagging patients (equivalent to the prevalence).
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Figure 2. Precision-recall curves

Calibration quality, assessed through expected calibration error (ECE) and visualized in
calibration plots, varied dramatically across models. XGBoost demonstrated exceptional calibra-
tion with ECE=0.015, the lowest possible value short of perfect calibration. Figure 3 (left panel)
shows XGBoost's predicted probabilities align nearly perfectly with observed readmission
frequencies across all probability bins. Points lie almost exactly on the diagonal "perfect calibra-
tion" line, indicating that patients assigned 20% readmission probability truly readmit at appro-
ximately 20%, patients assigned 35% probability readmit at 35%, and so forth. This calibration
excellence has profound clinical implications: predicted probabilities can be interpreted directly
as true risks without transformation, enabling evidence-based threshold selection, resource
allocation optimization, and accurate patient counseling (Van Calster et al., 2019).

Logistic Regression exhibited poor calibration (ECE=0.220), the worst among the three models.
The calibration plot reveals systematic overestimation of readmission risk: patients with
predicted probabilities near 0.40 had observed readmission frequencies closer to 0.25,
representing a 60% relative overestimation. This miscalibration likely stems from class imbalance
and the model's default regularization. Practical deployment would require post-hoc
recalibration through isotonic regression or Platt scaling (Niculescu-Mizil & Caruana, 2005),
which fit a monotonic transformation mapping raw model outputs to calibrated probabilities.
After recalibration, Logistic Regression could provide both competitive discrimination and
accurate probability estimates.

TabTransformer achieved intermediate calibration (ECE=0.138), with the calibration curve
showing moderate alignment punctuated by bins exhibiting overconfidence in mid-range
probabilities (0.30-0.50). The model's calibration substantially exceeded Logistic Regression's,
suggesting that transformer architectures may inherently produce more calibrated probability
estimates than linear models on tabular data.

Figure 3 (right panel) displays prediction distribution histograms. XGBoost generates a broad
distribution spanning 0.10 to 0.60, with most predictions concentrated in the 0.15-0.35 range,
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explaining the conservative threshold behavior observed in Table 1. Logistic Regression
produces a narrower distribution centered around 0.30-0.45. TabTransformer's distribution
concentrates in the 0.20-0.40 range. The histogram patterns confirm that threshold selection
critically impacts deployed model behavior.
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Figure 3. Calibration plots

Confusion matrices at threshold 0.5 (Figure 4) provide granular error breakdowns. Logistic
Regression identified 225 false positives and 194 false negatives, reflecting relatively balanced
error types. True negatives numbered 1,140 and true positives 240, yielding the 0.607 accuracy
and 0.55 recall reported in Table 1. XGBoost's matrix reveals extreme asymmetry: only 6 false
positives but 427 false negatives. The model correctly identified 1,359 true negatives but only 7
true positives (capturing just 1.6% of readmissions at threshold 0.5). This confirms the
conservative behavior and underscores the need for threshold optimization. TabTransformer's
matrix shows 161 false positives, 363 false negatives, 1,204 true negatives, and 71 true positives,
identifying 16% of readmissions while maintaining 88% specificity.
Confusion Matrices (Threshold = 0.5)
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Figure 4. Confusion matrices

Feature importance analysis identified clinically plausible and interpretable drivers of
readmission risk. Logistic Regression's top predictors, ranked by absolute coefficient magnitude,
were exclusively multi-label combinations of secondary diagnosis codes. The five strongest
positive associations (all coefficients >1.0 on the log-odds scale) involved renal, oncology,
respiratory, and infection diagnostic categories in various combinations. For example, the
highest coefficient (3=1.607) corresponded to the secondary code combination "renal, renal,
renal," indicating patients with multiple concurrent renal diagnoses faced substantially elevated
readmission risk. The combination "oncology, respiratory, infection" ($=1.349) similarly signals
high risk through comorbidity complexity. This pattern aligns with extensive clinical literature
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demonstrating that multimorbidity —particularly involving chronic kidney disease, cancer,
respiratory disease, and infection—drives readmission through disease complexity, treatment
burden, and physiologic fragility.

XGBoost's feature importance rankings, measured by gain (cumulative reduction in training
loss), identified a mix of demographic, clinical, and diagnostic predictors. Patient age emerged as
the single most important feature (gain=7.96), confirming the well-established age-readmission
relationship driven by frailty, multimorbidity accumulation, and decreased physiologic reserve
in older adults. Elective admission type ranked second (gain=7.36), likely operating as a
protective factor: elective admissions represent scheduled procedures in relatively stable
patients, whereas emergency admissions reflect acute decompensation. Abnormal creatinine
during hospitalization ranked third (gain=6.97), signaling acute kidney injury or chronic kidney
disease exacerbation. Comorbidity index (gain=6.00) directly quantifies multimorbidity burden.
Diagnosis codes for renal disease (gain=5.99) and respiratory conditions (gain=5.42) appeared
prominently. Anemia (gain=5.55), ICU utilization (gain=4.89), chronic kidney disease diagnosis
(gain=4.73), and high-risk medication prescriptions (gain=4.70) rounded out the top ten features.

The convergence of Logistic Regression and XGBoost on age, comorbidity burden, renal
dysfunction, and respiratory disease as primary risk drivers provides strong evidence for clinical
validity. Both models, despite fundamentally different architectures, independently identified
the same core risk factors documented in decades of readmission research. This concordance
suggests the models have learned true underlying relationships rather than spurious patterns,
increasing confidence in their potential for deployment.

To quantify performance inflation from temporally inadmissible features, we conducted a
controlled leakage experiment by training parallel models on an expanded feature set including
all four post-discharge predictors (72-hour laboratory draws, case manager contact, emergency
department visits within 7 days, new antibiotic prescriptions within 7 days) and the discharge
readmission risk flag. Table 2 reports the resulting performance deltas between clean and
leakage experiments across discrimination and calibration metrics.

Table 2. Performance Inflation From Post-Discharge Feature Leakage

Model Clean Leakage A Clean Leakage A Clean | Leakage A
AUROC AUROC AUROC | AUPRC | AUPRC | AUPRC ECE ECE ECE
Logistic 0.61 0.94 +0.33 0.35 0.88 +0.53 0.220 0.082 -0.138
Regression
XGBoost 0.63 0.94 +0.31 0.36 0.88 +0.52 0.015 0.014 -0.001
TabTransformer | 0.55 091 +0.36 0.30 0.83 +0.53 0.138 0.053 -0.085

Note. A = leakage - clean. Positive A AUROC and A AUPRC indicate performance inflation. Negative A ECE indicates
calibration improvement.

All three models exhibited dramatic discrimination improvements when post-discharge features
were included. AUROC increased by +0.31 to +0.36 across models, with Logistic Regression
gaining 33 percentage points (from 0.61 to 0.94, a 54% relative increase), XGBoost gaining 31
points (from 0.63 to 0.94, a 49% relative increase), and TabTransformer gaining 36 points (from
0.55 to 0.91, a 65% relative increase). AUPRC improvements were even more pronounced in
absolute terms, with all models gaining +0.52 to +0.53 (increases of 150-180% relative to clean
baselines). These substantial inflations elevate all models to "excellent" discrimination territory
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(AUROC >0.90) in the leakage experiment, compared to "fair" to "good" discrimination (AUROC
0.55-0.63) in the clean experiment.

The performance inflation reflects the strong mechanistic relationships between post-discharge
events and readmission outcomes. Patients who visit the emergency department within 7 days of
discharge are inherently more likely to be readmitted —the ED visit may represent early
decompensation presaging full readmission. Similarly, unplanned laboratory testing within 72
hours signals clinical concern from outpatient providers, and new antibiotic prescriptions
indicate suspected infection. These events are not merely correlated with readmission; they are
often intermediate steps in the causal pathway to readmission. Consequently, models
incorporating these features achieve near-deterministic prediction: if post-discharge events are
known, readmission can be predicted with high confidence.

However, this predictive power is a methodological artifact from the clinical deployment
perspective. At the moment of hospital discharge, when the readmission prediction must be
made to inform discharge planning and intervention targeting, post-discharge events have not
yet occurred. Their strong predictive signal is thus inaccessible, and models reporting
AUROC=0.94 in development will degrade to AUROC=0.61-0.63 in prospective deployment
when restricted to discharge-available features. This represents a 30+ percentage point gap
between development performance and deployment reality —a magnitude that could lead to
substantial resource misallocation, failed interventions, and erosion of stakeholder trust in
predictive analytics.

Interestingly, calibration improved for Logistic Regression and TabTransformer in the leakage
experiment (ECE decreased by -0.138 and -0.085, respectively), while XGBoost maintained near-
perfect calibration in both settings (ECE =0.015 in clean, 0.014 in leakage). The calibration
improvement for initially miscalibrated models suggests that post-discharge features provide
such strong, clear signal that even poorly calibrated architectures can align predicted
probabilities with observed outcomes when these powerful predictors are available. Logistic
Regression's ECE dropped from 0.220 to 0.082, moving from severe miscalibration to moderate
calibration solely through feature inclusion. This is a statistical artifact: in deployment, where
post-discharge features are unavailable, Logistic Regression reverts to its miscalibrated state
(ECE=0.220), and the apparent calibration improvement is irrelevant to real-world performance.

Figure 5 visualizes the performance separation between clean and leakage experiments through
side-by-side ROC curve comparisons for each model. In all three panels, solid lines represent
clean experiment performance (discharge-available features only) and dashed lines represent
leakage experiment performance (including post-discharge features). The visual separation is
striking: leakage curves approach the top-left corner of the ROC space (perfect discrimination),
while clean curves lie substantially below. For Logistic Regression (left panel), the leakage curve
achieves true positive rates exceeding 0.80 at false positive rates below 0.10, whereas the clean
curve requires false positive rates of 0.35-0.40 to achieve comparable sensitivity. XGBoost (center
panel) shows similar separation. TabTransformer (right panel) exhibits the largest absolute gap,
reflecting its 36-percentage-point AUROC inflation.
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ROC Curves: Clean vs. Leakage Experiments
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Figure 5. Leakage Curves

The leakage audit provides quantitative demonstration of a pervasive risk in clinical machine
learning: feature selection errors that seem minor—inadvertently including a few post-discharge
variables in a dataset of 25+ features—can inflate performance by 30-36 percentage points in
AUROC, creating the illusion of a highly effective model that will fail catastrophically in
deployment. This finding underscores three critical practices: (1) rigorous feature governance
requiring explicit documentation of temporal availability for every candidate predictor; (2)
systematic leakage audits comparing performance with and without suspected leakage features
to quantify inflation risk; and (3) conservative performance expectations recognizing that clean
experiment metrics (AUROC 0.61-0.63) represent realistic deployment potential, while leakage
metrics (AUROC 0.91-0.94) represent methodological artifacts.

4. Conclusion and Future Works

For hospital readmission prediction to transition from research to deployment, methodological
rigor in temporal validation, feature governance, and calibration assessment is essential. Our
comparison demonstrates that gradient-boosted trees (XGBoost) provide an optimal balance of
discrimination (AUROC=0.63), calibration (ECE=0.015), and interpretability for moderate-scale
tabular tasks. The leakage audit, revealing +0.31 to +0.36 AUROC inflation from post-discharge
features, provides quantitative evidence that feature time-of-availability enforcement is critical
for realistic performance estimation.

Healthcare institutions deploying readmission models should: (1) enforce strict temporal
validation by chronologically splitting data; (2) document feature availability relative to the
clinical decision point and exclude temporally inadmissible predictors; (3) conduct systematic
leakage audits to quantify inflation risk; (4) evaluate calibration alongside discrimination,
recognizing that well-calibrated probabilities enable evidence-based threshold selection; (5)
benchmark multiple model families rather than assuming architectural superiority; and (6)
prioritize interpretability unless empirical gains justify complexity. Beyond methodology,
successful deployment requires clinical workflow integration, transparent communication of
limitations, continuous performance monitoring for distribution shift, and governance ensuring
equitable application across patient populations.

The comparative evaluation of linear, tree-based, and attention-based architectures under
rigorous temporal validation yields actionable insights for clinical machine learning deployment.
Gradient boosting (XGBoost) emerged as the superior approach, combining competitive
discrimination (AUROC=0.63) with exceptional calibration (ECE=0.015). Well-calibrated
probabilities enable evidence-based threshold selection: if interventions cost $500 and prevent
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$10,000 readmissions, the cost-effective threshold is ~0.05, identifying the top 5% highest-risk
patients. Miscalibrated models distort this analysis, potentially leading to over- or under-
intervention.

Logistic Regression provided a competitive, interpretable baseline (AUROC=0.61) with balanced
operating characteristics but poor calibration (ECE=0.220). Post-hoc recalibration could address
this limitation, yielding a simple, transparent model suitable for regulatory environments
prioritizing interpretability. The model's signed coefficients enable direct clinical review: each
covariate's effect on log-odds readmission risk is immediately apparent, facilitating hypothesis
generation and stakeholder trust.

TabTransformer's underperformance (AUROC=0.55) likely reflects insufficient data scale (8,400
training samples) or feature dimensionality (25 features) to amortize transformer parameter
overhead. Attention-based architectures excel on large-scale datasets (>50K samples) with rich
categorical structure where complex interactions are numerous and difficult to specify manually
(Gorishniy et al., 2021). Our moderate-dimensional task falls below this regime. This negative
result serves as a cautionary note: deep learning architectures do not universally dominate
tabular clinical data. Simpler baselines must be benchmarked, and architectural complexity
justified by empirical gains.

The leakage audit quantified +0.31 to +0.36 AUROC inflation when post-discharge features were
included, demonstrating that seemingly modest feature selection errors yield dramatic
performance misestimates. A model reporting AUROC=0.94 in development but restricted to
AUROC=0.63 in deployment fails to deliver expected value, eroding trust and wasting
implementation resources. Feature governance protocols are essential: teams must document
temporal availability of each predictor relative to the decision point and exclude any features
unavailable at that time. Leakage audits—training parallel models with suspected leakage
features—should be standard practice, quantifying inflation risk and providing calibrated
deployment expectations.

Study limitations include the use of synthetic data generation for reproducibility and privacy,
which may not capture real EHR complexity, missingness patterns, and coding irregularities.
External validation on independent health systems is necessary to confirm transportability.
Hyperparameter tuning was deliberately limited for computational tractability; exhaustive
search could narrow performance gaps. The temporal split respected discharge date ordering but
did not model seasonal or policy-driven distribution shifts within the study period. Real
deployments should monitor performance over time and trigger retraining when degradation
occurs. The TabTransformer implementation was compact (2 layers, 128-dimensional
embeddings); deeper variants may improve performance at the cost of overfitting risk.

From a reproducibility perspective, all experiments used fixed random seeds (42) across NumPy,
PyTorch, and XGBoost. All preprocessing, training, and evaluation code, configurations, and
artifacts are preserved in timestamped directories. Data schemas, feature definitions, split
assignments, and model hyperparameters are documented in YAML files. No real patient data
were used; future applications to real clinical data require HIPAA compliance, IRB approval,
appropriate de-identification, and ongoing governance to prevent re-identification.
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improving the contact endurance and wear resistance of gears are proposed.

1. Introduction

Gears are widely used in engineering. Their durability and reliability often determine the
reliability and longevity of the machines as a whole. Experience with gear operation shows that
the vast majority of failures occur due to contact surface degradation in closed gears and tooth
breakage due to bending in open gears. Currently, there are many ways to improve the wear
resistance and longevity of gears, but the problem remains unresolved and remains relevant.

During operation, the surface layers of gears are destroyed as a result of the cyclic action of
contact stresses, the value of which reaches 3570 MPa [1], and wear out due to slippage of the
contacting surfaces of the gear and wheel. Maximum bending stresses occur when the entire
load is supported by one pair of teeth, and the point of its application is in the position furthest
from the tooth root. In this case, the maximum bending stresses are concentrated at the root of
the tooth, and a stress concentration occurs in the fillet zone. For spur gears of gearboxes,
maximum bending stresses reach 850 MPa [2], and for case-hardened heavily loaded gears — up
to 2500 MPa [1].

In gear pairs, joint rolling occurs only at the pole. Since the directions of movement of the contact
lines of the pinion and wheel are opposite, slippage occurs between them. The slip velocity is

" Corresponding author.
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equal to the difference in rolling speeds of the pinion and wheel and increases with increasing
gear ratio. Slippage of the contacting tooth surfaces causes friction in the contact zone and
material wear.

The stress-strain state of the tooth material is greatly influenced by the rate of load application.
Studies [3, 4] have shown that contact between two teeth occurs within 10-3 -10-4 s. Calculations
show that even in low-speed gear transmissions, the load is applied to the contact by an impact
[3]. The combined action of normal and shear stresses in a thin surface layer of the material
creates a volumetric stress state, which promotes the occurrence of plastic deformation. High
contact stresses and plastic deformation cause instantaneous temperatures at the points of actual
contact, reaching 700-800°C, which rapidly decrease over the course of the cycle [3].

Thus, the surface of the contacting teeth experiences cyclic thermal effects. As a result of the force
and temperature effects in microvolumes, rapid diffusion of elements to the contact surface
occurs. Thus, an analysis of the operating conditions of gears shows that the service life of gears
depends largely on a detailed study of the engagement conditions, the nature of the stress-strain
state of various zones of the gears, and the correct selection of materials and methods for
strengthening these zones, in accordance with the magnitude and nature of the stress state.
Solving this problem with a single technology is difficult. A combination of several hardening
technologies is required for the working surface and core of the gear, ensuring optimal
properties both on the surface and in depth in each zone, in accordance with the magnitude and
nature of the load. Such technologies may include: thermal and thermochemical treatment of the
material; application of coatings with predetermined properties to the surface, in accordance
with the stress state in the surface layers of the gears.

Currently, carburizing and nitrocarburizing of low-carbon steels, followed by heat treatment, are
widely used to strengthen gears. These processes significantly increase wear resistance and
durability. However, these technologies are carried out in environments containing large
amounts of hydrogen, which adversely affects the strength of the steel.

According to modern concepts [6-9], hydrogen can exist in steel for long periods of time in the
form of ions and molecules. A small amount of hydrogen in steel does not cause noticeable
changes in its properties. Increasing the hydrogen concentration in steel above a certain limit,
dependent on the steel's quality, alters its physical and mechanical properties and can cause
defects affecting its strength. Hydrogen in steel alters its mechanical properties under short-term
and long-term static loading, as well as under repeated alternating and impact loading [6-9].

A promising technology for strengthening the surface of materials is ion nitriding in hydrogen-
free saturating environments (mixtures of nitrogen with argon) [10], the use of which eliminates
the harmful effects of hydrogen on metal.

5. Statement of the problem

To study the effect of ion nitriding on the strength characteristics and residual stresses in steels,
and to determine the effect of coating and base hardness on the contact endurance of samples
during rolling with slippage.

6. Research results and their discussion

In order to identify the effect of hydrogen on metal during ion nitriding, experimental studies
were conducted on the physical, mechanical and operational characteristics of nitrided samples
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of various steels in hydrogen-containing and hydrogen-free saturated environments under
tension, bending and cyclic contact loading.

Tensile strength and ductility were studied using flat specimens of St.3, 40X, 65G, and
12X18N10T steels manufactured according to GOST 9651-73 and subjected to ion nitriding under
various process conditions. The specimens were 75 mm long and had a working cross-section of
3 x 3 mm. The studies were conducted using an IMASH 20-78 test facility. The following
characteristics were examined during the experiments: tensile strengthoV, yield strengthoT,
proportionality limitoPC, relative elongation d, relative contraction 1, specific fracture work A,
and factual studies of the destruction process were also carried out. In the course of the research,
the cross-sectional dimensions of the specimens were measured before and after the tests, the
tensile diagram was recorded and the destruction process was videotaped. All experiments were
carried out at room temperature at a moving clamp speed of 0.1 mm/min and repeated 3 times.
Table 1 shows the results of studies of the strength and ductility characteristics of steels St.3, 40X,
65G and 12X18N10T during tensile testing. Specimens from these steels were subjected to ion
nitriding in a hydrogen-containing environment (75 vol.% N2 + 25 vol.% H2) and a hydrogen-
free environment (75 vol.% N2 + 25 vol.% Ar) according to the following regime: nitriding
temperature T = 580 °C; medium pressure p = 240 Pa, nitriding duration t =4 hours.

Table 1. Physical and mechanical characteristics of samples from various steels during tensile tests
before and after ion nitriding (nitriding mode: T=580°C, p=240 Pa, ©=4 hours)

No | Steel Grade | Ion Nitriding | Ultimate Yield Relative Relative Specific

Medium Strength Strength Elongation 9, | Reduction Deformation
ob, MPa ot, MPa % P, % Work A,
MJ/m3

1 St.3 not nitrided 500 247 30.0 60.0 105.0
75 vol.% N, + 25 | 557 295 10.0 25.0 51.0
vol.% Ar
75 vol.% N, + 25 | 474 338 6.0 18.0 25.0
vol.% H,

2 | 40X not nitrided 560 380 10.0 30.0 41.1
75 vol.% N, + 25 | 623 551 5.65 214 289
vol.% Ar
75 vol.% Na + 25 | 605 566 3.12 6.87 15.2
VOI.% H2

3 | 65G not nitrided 700 320 9.0 25.0 59.8
75 vol% N, + 25 | 744 587 3.83 14.9 294
vol.% Ar
75 vol.% Na + 25 | 661 544 2.67 10.8 16.5
vol.% H,

4 12X18HI10T | not nitrided 520 280 40.5 55.2 182.3
75 vol.% Nj + 25 | 551 321 37.5 494 170.2
vol.% Ar
75 vol% N + 25 | 546 318 36.1 452 156.7
vol.% H,

Studies have shown that ion nitriding significantly affects the strength and ductility properties of
steels, increasing strength and decreasing ductility. During ion nitriding in a hydrogen-free
environment, the tensile strength of the steel samples studied increased by 4-11%, while their
ductility decreased by 1.1-3 times. Ion nitriding has a greater effect on less alloyed steels. For
example, while for 12Kh18N10T steel, the tensile strength of the samples increased by 4%, and
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the relative elongation and contraction of area decreased by approximately 10%. For St.3 steel,
the tensile strength of the samples increased by 11%, while the ductility characteristics d and
decreased by more than 3 times.

A comparison of strength and ductility characteristics after ion nitriding in hydrogen-containing
and hydrogen-free environments (Table 1) shows that the presence of hydrogen in the saturating
medium significantly reduces these characteristics of low-alloy structural steels. Thus, the tensile
strength of St.3 and 65G steel specimens after ion nitriding in a hydrogen-containing
environment decreased by 17.7% and 12.5%, respectively, compared to their value after ion
nitriding in a hydrogen-free environment. The results were even lower than those of non-
nitrided steels. The hydrogen-containing environment has an even greater impact on the
reduction of steel ductility during ion nitriding. Thus, for steels St.3, 40Kh and 65G, nitrided in a
hydrogen-containing environment, the relative elongation d decreased by 40, 45 and 31%,
respectively, and the relative contraction 1\ by 28, 68 and 27.5% compared to their values during
nitriding in a hydrogen-free environment (Table 1). This is due to the harmful effect of hydrogen
on steel, associated with hydrogen embrittlement and hydrogen corrosion of the metal, which
confirms the theoretical concepts put forward in [6-9].

The detrimental effect of hydrogen on the plastic properties of steels is clearly demonstrated by
the specific work of deformation, which is the area of the tensile stress-strain diagram in the o, d
coordinate system. Calculations have shown that the specific work of deformation of steels St.3,
40Kh, 65G, and 12Kh18N10T, nitrided in a hydrogen-containing environment, is 2.1; 1.9; 1.8, and
1.05 times lower, respectively, compared to its values during nitriding in a hydrogen-free
environment (Table 1). From the presented data, it is evident that with an increase in the degree
of alloying of the steel, the detrimental effect of hydrogen on its mechanical properties decreases.

High-cycle bending fatigue tests were conducted on smooth cylindrical specimens with a
diameter of 5 mm using an IMA-5 bending machine under pure bending with rotation
(frequency of 50 Hz), in a 3% NaCl solution and in air. The specimens were made of Steel 45,
some of which were subjected to ion nitriding in hydrogen-containing (60 vol. % N2 + 40 vol. %
H2) and hydrogen-free (60 vol. % N2 + 40 vol. % Ar) environments with other process
parameters remaining constant (T =540 °C, p =80 Pa, T =240 min).

The results of these studies (Figure 1) show that the fatigue limit of the samples subjected to ion
nitriding in a hydrogen-free environment increased by 1.75 times (from 210 to 370 MPa) when
tested in air, and by 3.6 times (from 30 to 110 MPa) when tested in a 3% NaCl solution, compared
to its values for non-nitrided samples.

400 Alr test
3% NaCl solution
350
300

250

200

Endurance limit (MPa)

150

100

50

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Test number

Fig. 1 Fatigue curves of steel 45 under bending tests
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The fatigue limit of samples nitrided in a hydrogen-containing environment (curve 3) when
tested in a 3% NaCl solution is 25% lower compared to samples nitrided under a similar regime
in a hydrogen-free environment. The reason for such a decrease in the fatigue limit of steel is the
harmful effect of hydrogen, which causes: decohesion of the crystal lattice of the metal;
interaction of hydrogen atoms in the metal with dislocations; pressure of molecular hydrogen in
microcavities of steel; chemical interaction of hydrogen with alloy components and the release of
hydrogen-containing phases [6].

A significant increase in high-cycle fatigue of samples after ion nitriding is due to the formation
of nitride phases on the metal surface and the development of residual compressive stresses in
the nitrided layers. Compressive stresses during ion nitriding reach 800 MPa and can be varied
within a wide range by adjusting the process parameters of the diffusion saturation process
(Figure 1b). The maximum effect of residual compressive stresses is achieved at their optimal
value.

The study of contact fatigue of steels under rolling friction with sliding was carried out on a
special rolling friction setup [12], which was mounted on the basis of a drilling machine with a
vertical spindle. Balls or cylindrical rollers with a slip coefficient of 0.4 and 17.7%, respectively,
rolled along a circular track of flat samples. The loads on the rolling elements were 50, 100, 160,
250 N (maximum pressure p0 2075; 2615; 3057; 3180 MPa, respectively), the spindle speed was
900 min-1. Samples of various steels were studied after ion nitriding in hydrogen and hydrogen-
free environments with different heat treatments and chromium and titanium nitride coatings.

The results of comparative studies of wear resistance and contact endurance of samples are
shown in Tables 2 and 3 and in Figure 2.

0.35f
0.30F

0.25F

Wear (mm?)
o
N
o

0.15¢

0.10F

0.05F

50 75 100 125 150 175 200 225 250
Load (N)

Fig. 2. Dependence of pitting fatigue life on wear intensity

Figure 2 — Dependence of 20Kh13 steel wear under rolling friction with sliding on the number of
cycles under various ball loads: N=50, 100, 160, and 250N. At a friction coefficient of 0.4, these
wear cycles reach the surface. Many researchers believe that tangential forces at the contact
surface cause tensile stresses, which contribute to the formation of microcracks. Residual
compressive stresses in the surface layer reduce tensile stress and contribute to increased crack
resistance of the material.
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Table 2. Physical, mechanical and tribological characteristics of samples after ion nitriding and heat treatment and their
durability during rolling friction tests in I-20 lubricant, ball load 150N (p0=3180 MPa)

No | Steel | Heat Surface Base Rolling track Coating | Wear Pitting
grade | treatment/ | microhardness, | microhardness, | microhardness | thickness, | intensity, | fatigue
technology | MPa MPa after testing, pm 101 life,

/ coating MPa N-10¢
cycles
1 20X13 | without 2550 2370 3460 0 620 0,58
heat
treatment
2 20X13 | ion 7380 2370 3650 260 570 0,88
nitriding in
60% Ar +
40% N,
atmosphere
3 45 without 3200 2450 3290 0 600 0,6
heat
treatment
4 45 ion 7440 2450 4100 280 452 0,98
nitriding in
60% Ar +
40% N,
atmosphere
5 45 quenching | 5100 4110 5230 0 21,2 91
6 45 quenching | 7460 4110 7200 290 16,1 12,9
+ion
nitriding in
60% Ar+
40% N,
atmosphere
7 45 ion 8420 2450 4050 290 440 0,75
nitriding in
60% Ar+
40% H,
atmosphere
8 45 quenching | 8560 4110 8210 300 154 11,2
+ion

nitriding in
60% Ar+
40% H,
atmosphere
9 20X13 | ion 7640 2370 3670 280 580 0,7
nitriding in
60% Ar +
40% H,
atm.

The figure 2 shows that plastic deformation accounts for the majority of the total wear, increasing
sharply with increasing ball load. Ball slippage wear is insignificant due to the low slip
coefficient (0.4%). When cylindrical rollers were used as rolling elements, the slip coefficient was
17.7%, and wear from sliding friction, before pitting, was predominant compared to plastic
deformation of the surface layer. The contact fatigue life of the samples was 25-30% lower. This is
explained by the fact that point contact of the material with the balls results in a more favorable
volumetric stress-strain state compared to the linear contact of cylindrical rollers.
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Research by many authors [1-5] shows that maximum stresses under contact loads and bending
occur in the surface layers, leading to microcracks and failure of both the surface and the
structure as a whole due to the development and propagation of microcracks from the surface
into the core. Therefore, to improve the wear resistance and durability of structural components,
and gears in particular, both the surface and the core should be strengthened, but with different
physical and mechanical properties—large ones on the surface and smaller ones in the core. In
other words, the surface layer structure should have a gradient structure corresponding to the
stress-strain state occurring in the component.

Model studies of the stress-strain state of a plate with multilayer coatings under a contact
distributed load on the contact area with normal forces changing according to a parabolic law
have shown [11] that an increase in the strength and durability of the coating-base composition
can be achieved by:

- application of hardening coatings with a high modulus of elasticity and a smooth gradient of
change in properties in depth from the surface to the base (diffusion coatings);

- reducing the gradient of properties by depth, due to an increase in the coating thickness and an
increase in the rigidity of the base;

- application of thin low-modulus films to the coating surface, providing an increase in the
contact area and anti-friction properties.

These recommendations are clearly confirmed by the results of experimental studies (Table 3), in
particular: application of a strengthening high-modulus coating of titanium and chromium
nitride to a hard base; production of diffuse nitrided layers with a smooth gradient of change in
hardness across the thickness; application of oxidizing films to nitrided layers; obtaining an
optimal ratio of the hardness of the coating and the base during nitrohardening significantly
increase the wear resistance and contact endurance of materials during rolling with slippage.

Table 3. Physical, mechanical and tribological characteristics and durability of samples after ion nitriding, heat
treatment and other coatings during rolling friction tests in I-20 lubricant, ball load 150N (p0=3180 MPa)

No | Steel Heat Surface Base Rolling Coating Wear Pitting
grade | treatment/ Micro- micro- track micro- thickness, | intensity, | fatigue
technology/ hardness, hardness, | hardness after pm I-101 life,
coating MPa MPa testing, MPa N-10¢
cycles

without heat
1 IIIX15 | treatment 3840 3340 3340 0 594 0,7
without heat
treatment + ion
2 IIX15 | nitriding 9180 2680 5400 300 312 1,08
without  heat
treatment +

IIX15 | oxidation 6140 2680 5420 300 210 1,25

4 IIX15 | quenching 7210 7210 7130 0 8 251
quenching  +

5 IIX15 | ion nitriding 9180 4970 7160 300 84 24,2
quenching  +

6 IIX15 | jon nitriding 7660 5800 7300 290 75 26,4
quenching  +

7 IIX15 | ion nitriding 7860 5900 6350 120 13 22,8
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quenching  +
TiN (CIB

8 IIX15 | method) 10400 5120 5200 5 15 22
without  heat
treatment +
TiN (CIB

9 IIX15 | method) 14000 2680 3350 5 564 0,75
quenching  +
galvanic ~ Cr

10 | HIX15 | coating 12000 7210 7140 5 7,6 284
quenching  +
galvanic ~ Cr

11 | MIX15 | coating 12000 7210 7300 10 7 30,1
nitroquenching

12 | IIX15 | model 8700 7200 7630 330 3,6 40,8
nitroquenching

13 | HIX15 | mode2 7700 7420 7420 350 32 48,8
nitroquenching

14 | IX15 | mode3 7300 7200 7380 410 38 38,4
nitroquenching

15 | HIX15 | mode4 8500 7410 7410 320 37 387

In the contact zone, under load, normal stresses arise with a maximum on the surface at the
center of the contact area and shear stresses with a maximum at a certain depth. The presence of
friction forces causes the maximum shear stress to shift from depth to depth.
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Fig. 3 Surface Roughness vs Number of Cicles

The graph 3 illustrates the dependence of the displacement amplitude ( U ) (um) on the number
of loading cycles ( N \times 106 ) for steels with and without nitriding treatment under
different applied loads (50, 100, 160, and 250 N). The solid curves correspond to steel without
heat treatment, while the dashed ones represent nitrided steel (treated according to regime 1a).
As the number of loading cycles increases, the displacement gradually grows for both materials,
but the values for nitrided steel remain significantly lower throughout the entire range of cycles.
This indicates a considerable increase in surface hardness and fatigue strength due to nitriding.
For example, at the highest load of 250 N, the displacement of untreated steel reaches 70-80 um,
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while the nitrided surface exhibits only 3540 um deformation, which means a reduction of
about 40-50%. The curves show that, during the initial stage of loading (up to 0.4x10¢ cycles), the
deformation grows rapidly due to the running-in process, after which the growth rate stabilizes.
Nitrided steel demonstrates an earlier stabilization of the curve, indicating the formation of a
stable surface layer resistant to plastic deformation and microcrack propagation. In contrast, the
untreated steel continues to accumulate deformation, showing signs of progressive surface
fatigue. The overall tendency confirms that surface nitriding significantly improves the resistance
of steel to cyclic contact loading by forming hard nitride phases (Fe,—N, FesN) that reduce wear
and prevent structural damage. Therefore, nitriding can be considered an effective method for
enhancing the operational durability and dimensional stability of mechanical components such
as gears, shafts, and cutting tools subjected to long-term cyclic stresses.

7. Conclusion

Thus, an analysis of operating conditions and the stress-strain state of gear teeth revealed that
different areas of the tooth surface experience varying stress levels and types. The most
hazardous surface areas include the root, the gullet, and the mid-tooth surface region located at
the engagement pole. Therefore, it is clear that these surface areas require different surface layer
properties. This can be achieved by strengthening the tooth surface, particularly in hazardous
areas, by applying hardening coatings with a gradient structure across the depth; by creating
optimal residual compressive stresses in the surface layers; and by strengthening the tooth core.
This requires heat treatment of the tooth material to increase the core hardness and the
application of hardening coatings using thermochemical treatment in hydrogen-free
environments, with the physical and mechanical properties and phase composition of the
coatings controlled depending on the operating conditions and stress-strain state of the gears.
REFERENCE LIST

[1]. Aleksandrov, V.1, & Sobolev, A. S. (1978). Materialy zubchatykh koles gruzovykh avtomobiley. Minsk: AN BSSR
Institut problem nadezhnosti i dolgovechnosti mashin, 58 p.

[2]. Dymshits, I I. (1960). Korobki peredach. Moscow: Mashgiz, 360 p.
[3]. Trubin, G. K. (1962). Kontaktnaya ustalost’ materialov dlya zubchatykh koles. Moscow: Mashgiz, 404 p.

[4]. Kopf, I. A., Komilov, V. V., & Efimov, E. V. (1998). Nestatsionarnaya termicheskaya model” zaedaniya i iznosa
evolventnykh zubchatykh peredach. Tekhnika mashinostroeniya, 1(15), 54-59.

[5]. Zinchenko, V. M. (2001). Inzheneriya poverkhnosti zubchatykh koles metodami khimiko-termicheskoy obrabotki.
Moscow: Izd-vo MGTU im. N. E. Baumana, 303 p.

[6]. Panasyuk, V. V., Andreykov, A. A., & Parton, V. Z. (1988). Mekhanika razrusheniya i prochnost’ metallov: Spra-
vochnoe posobie. Vol. 1: Osnovy mekhaniki razrusheniya. Kiev: Naukova Dumka, 488 p.

[7]. Kalachev, V. A. (1985). Vodorodnaya khrupkost’ metallov. Moscow: Metallurgiya, 217 p.
[8]. Alfeld, G, & Fel'kly, I. (Eds.) (1981). Vodorod v metallakh. Vol. 2. Moscow: Mir, 430 p.
[9]. Karpenko, G.V,, & Krip’yakevich, R.I. (1962). Vliyanie vodoroda na svoystva stali. Moscow: Metallurgizdat, 198 p.

[10]. Kaplun, V. G., & Pastukh, I. M. (2002). Enerho- i resursozberihayucha ekolohichno chysta tekhnolohiya ta
obladnannya dlya zmitsnennya detaley mashyn. Mashynoznavstvo, 2, 49-51.

[11]. Kaplun, P. V. (1999). Doslidzhennya napruzheno-deformovanoho stanu plastyny z pokryttyamy pry kontaktno-
mu navantazhenni. Vymiryuval'na ta obchyslyuval'na tekhnika v tekhnolohichnykh protsesakh, 4, 179-182.

[12]. Kaplun, P. V. (2001). Kinetika iznosa staley s diffuzionnymi pokrytiyami pri kontaktnom tsiklicheskom
nagruzhenii. Problemy tribolohii, 1, 119-124.

136



JOURNAL OF BAKU ENGINEERING UNIVERSITY- MECHANICAL AND INDUSTRIAL ENGINEERING

2025. Volume 9, Number 2 Pages 137-143

UDC: 621.311
DOI: https://doi.org/10.30546/09085.2025.02.328

ELECTRONIC TREATMENT OF COMPLEX STRUCTURES
IN A TORCH VOLUMETRIC ELECTRIC DISCHARGE

Elchin GURBANOV™

Baku Engineering University, Khirdalan, Azerbaijan

ARTICLE INFO ABSTRACT
Article history The influence of torch discharge treatment on carbon-filled plastics with epoxy
Received:2025-10-22 binder and carbon-filled plastics with cloth layer on the surface was explored.
Received in revised form:2025-10-22 Was elaborated the configuration of potential electrode for getting the stable
Accepted:2025-10-31 torch discharge in positive half-period and corona in negative half-period of AC.
Available online The limiting wetting angle of materials surface after an activation by torch
Keywords: discharge was measured. Was shown an increase of adhesion between metal
torch discharge; coating and treated surface. Was detected a big effect of electrical treatment in
corona discharge; static regime when the electrical discharge influence on the surface is summed-
adhesion; up by the action of electron-ion components and active gaseous products action.
carbon-filled plastics;
wetting angle.

JEL classification: L60, L64,033,C63

1. Introduction

Exposure to no equilibrium electrical discharges in gases can alter the physicochemical
properties of the surface layer of materials, including increasing surface energy, which improves
adhesion [1]. One interesting form is the torch discharge, which occurs in electronegative gases,
including air, in non-uniform fields of a specific configuration [2] at interelectrode distances of 2-
20 cm. It consists of a sequence of cathode-directed streamers and, in terms of its development, is
intermediate between a corona discharge and a spark discharge. Like any transient form, the
torch discharge is unstable, and its stabilization requires current limiting measures, for example,
by using limiting resistors or creating a special field configuration.

In devices implementing a torch discharge [2,3], a metal “pin” serves as the anode, and a “plane”
serves as the cathode. Conditions in the gap at a sufficient distance from the anode have little
effect on the formation and stability of the torch discharge, as streamers are generated and
formed in the region of high field strength near the anode. This characteristic creates the physical
prerequisites for using torch discharge to modify the surface of products with a wide range of
shapes, sizes, and electrical properties. For example, in [3], it was shown that an increase in
adhesion properties after treatment in a torch discharge at a constant voltage is observed for
wool fibers, fluoroplastic, and polyethylene threads.
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At the same time, using torch discharge at a constant voltage to modify the surface of solid
dielectric materials is difficult, even if a thin dielectric layer is located on a conductive substrate,
since charge accumulation on the dielectric surface leads to "locking" of the discharge.

With alternating voltage, a torch discharge is ignited during each positive half-cycle, and an
avalanche corona during each negative half-cycle of the applied voltage. The accumulated
positive charge on the dielectric surface during the torch discharge is neutralized by the negative
corona.

2. Methodology and experimental part

This study examined the effect of a torch discharge in air on the surface of composite materials-
carbon fiber reinforced plastics with or without fiberglass sublayers. Experiments with electric
discharge processing were conducted using the setup (fig. 1), where HVS is the high-voltage
source; kV is a kilovoltmeter, Rlim and R are the limiting and measuring resistances; DG is the
discharge gap; D1 and D: are diodes and ELO is the electronic oscilloscope.

A refractory (molybdenum) “pin” electrode with a diameter of 1.5 mm and a cone-shaped end
was used as the torch-forming device [4]. The cylindrical portion of the “pin” was covered with a
dielectric nozzle. The working end of the “pin” faced the samples, which were positioned on a
flat surface. The other end was attached directly to a limiting resistor (KEV-5) with a value of 10-
20 Mom.

° [J'] DG
HVS
. Riim
o__l @D ]DG
P
R
D2 ELO
L D1

—o\
\ITe

Fig. 1 Schematic diagram of the experimental setup for processing samples in a torch discharge

To determine the stable combustion mode of the torch discharge, geometric parameters
characterizing the degree of influence of the dielectric nozzle on the field were varied: the
distance to the work piece (2-10 cm) and the depth of the electrode insertion into the nozzle end
(0-3 mm). As a result, an optimal anode design was experimentally determined that ensured a
stable torch discharge during the positive half-cycle of alternating voltage at industrial
frequency. A stable corona was ensured during the negative half-cycle. With a distance between
the electrodes of L=4 cm, the torch wetting spot had a diameter of ~1.5 cm.

The presence of two diodes, D1 and D2, in the recording circuit allowed for separate
measurement of the effective current values during each half-cycle of the applied voltage.
Current during the negative half-cycle was recorded by connecting diode D, and current during
the positive half-cycle by connecting diode D2. The current-voltage characteristic of the torch-
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forming device under alternating voltage is shown in figure 2, where curve 1 corresponds to the
effective current value with the diodes disconnected, curve 2 to the positive half-cycle, and curve
3 to the negative half-cycle.

200 - I> mcA

40 1 3

12 14 16 18 20 22 U,y
Fig. 2 Current-voltage characteristic of the torch-forming device at alternating voltage

The discrepancy between the total current and the sum of the currents during the positive and
negative half-cycles of the alternating voltage is due to the imperfections of the diode
characteristics. The appearance of a stable torch during the positive half-cycle is noted, according
to oscillograms and visual observation, at U=12 kV. At U > 21 kV, spark channels are observed
against the background of the stable torch. When a direct positive voltage of 22 kV is applied to
the torch-forming device, a torch discharge is ignited. However, it has been noted that the torch
discharge stability at direct voltage is significantly lower than with alternating voltage, and the
stable torch currents for the same electrode configuration are lower. The stable torch range is 22-
28 kV.

The applicability and effectiveness of torch discharge at direct and alternating voltages was
tested when processing carbon fiber reinforced plastic (CFRP) plates and CFRPs with two
fiberglass sublayers on each side. Since carbon fiber reinforced plastic (CFRP) is a conductive
material, torch treatment can be used to modify its surface with both direct and alternating
voltages. The surface of carbon fiber reinforced plastic (CFRP) plates with fiberglass sublayers is
nonconductive, so torch treatment with alternating voltage is the only option.

The degree of modification was determined by the change in the wetting angle 0, which is
related to the value of the work of adhesion forces by the Dupré-Young relationship:

Wy =y +cosb) (1)

where 7 is the surface tension of the working fluid, 0 is the wetting angle (for distilled water” =
72.75*10-3 N/m or 72.75 m]/m?2).

The average value was calculated based on measurements at three points on the sample. The
samples were treated at voltages of 15.5 and 19 kV with torch currents of 32 and 136 pA and
negative half-cycle corona currents of 20 and 30 uA, respectively.

At 15.5 kV, the corona and torch currents differ by a factor of 1.5. This treatment of the carbon
fiber reinforced plastic surface results in a monotonic increase in adhesion (curve 1, fig. 3). The
main increase in adhesion is observed in the first 100 s of treatment, followed by insignificant
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growth. After 5 min of treatment, adhesion COS € =0.82. Treatment of the surface of carbon fiber
reinforced plastics with a sublayer also leads to a monotonic increase (curve 2). The main
increase is noted in the first 50 s of treatment. Five-minute treatment yields adhesion

C0s6 =0 86. At a voltage of U=19 kV, the torch current exceeds the corona current by four times.
In this case, a monotonic increase in adhesion is observed during treatment of both carbon fiber
reinforced plastics and CFRPs with a sublayer (curves 3 and 4, respectively). After five minutes
of treatment, adhesion €0S€=0.94 for carbon fiber reinforced plastics and €0S€=0.95 for carbon
fiber reinforced plastics with a sublayer.

It was noted that with increasing discharge exposure time, the curves €0S & (t) reach saturation,
which can be explained by the onset of a dynamic equilibrium between the processes of
formation and destruction of groups that increase surface adhesion. Since, as the modified layer
is removed, deeper layers of the sample will be exposed to the discharge.

When machining carbon fiber reinforced plastic (CFRP) samples with a sublayer, a characteristic

peak appears on the dependence curve COS 0 (1), which is reproduced under different machining
conditions. This peak may be due to two different mechanisms increasing surface adhesion.

cos O

1.0 A 4
3
2
0.8 1
s
0.6
0.4
0.2
100 200 300 400 b sec

Fig. 3 Dependence of the change in the wetting angle of the surface of carbon fiber reinforced
plastics (1, 3, 5) and CFRPs with a fiberglass sublayer (2, 4) on the duration of treatment in a torch discharge:
1, 2 - discharge current 90 pLA at alternating voltage; 3, 4 — discharge current 150 (A at alternating voltage;
5 —discharge current 50 HA at constant voltage

Under the first machining condition (U=15.5 kV), the steepness of the initial portion of curve 3 is
approximately three times greater than that of curve 1. This suggests that the increased
machining effect is attributed to the effect of the torch discharge during the positive half-cycle. It
is possible that some of the accelerated modification may also be attributed to the increase in
negative corona current.

Under the second condition, at U=19 kV, higher values of adhesion work are achieved compared
to the first condition, and the difference in wetting angles at different points on the same sample
after machining is small, indicating uniform machining in this condition. Machining samples at
U > 19 kV yielded higher average values, but due to the presence of sparks and their localization
at certain points on the surface, machining of the samples was uneven. Furthermore, in this case,
the appearance of spots on the surface of the carbon fiber reinforced plastics with a sublayer after
processing was noted.
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Under constant voltage, the carbon fiber reinforced plastic surface was treated at U=27 kV and a

torch current of 50 pA. The dependence cosd (t) for the treatment of the carbon fiber surface is
shown in figure 3 (curve 5).

It can be seen that the dependence COS (t) peaks at 100 s (COSO (t)=0.91) and then decreases,
indicating that prolonged treatment degrades the previously achieved effect. Compared to
treatment of carbon fiber reinforced plastic samples in a torch discharge under alternating

voltage, the steepness of the COS® (t) curve under constant voltage is greater. However, the
ability to process at higher average currents and achieve better treatment results is an advantage
of torch processing under alternating voltage. Furthermore, the use of alternating voltage
simplifies the design and operation of the installation.

Experimental results show that a bipolar mode combining a torch discharge with a negative
corona may prove optimal for practical use in electrical discharge surface modification of
composite materials.

Furthermore, this mode enables surface modification of large dielectrics with equal torch and
corona discharge currents, where the positive charge from the torch accumulated on the surface
is compensated by the negative charge of the corona. In this case, a longer treatment period is
required to activate the surface. However, for small samples, treatment with higher torch
currents exceeding the corona current is possible, as this allows the charge to drain from the
surface.

Since the effect of an air discharge on the surface of materials involves the action of the electron-
ion component of the discharge and active oxygen-containing gaseous compounds (ozone,
nitrogen oxides, and atomic oxygen), the objective was to determine which of these factors is
decisive when treating the surface of carbon-fiber reinforced plastics and carbon-fiber reinforced
plastics with a sublayer using a torch discharge under alternating voltage. To this end, the
following experiments were conducted. First, during treatment near a flat electrode, the near-
electrode zone was purged with an air flow under an excess pressure of 0.5 atm. This prevented
oxygen-containing discharge products from coming into wetting with the sample surface, and
only the electron-ion component of the discharge contributed to the surface modification.
Treatment was then carried out while simultaneously using a metal mesh in wetting with the flat
electrode. It was positioned above the sample surface parallel to their plane. In this case, the
samples were exposed only to gaseous discharge products.

The wetting angle measurements after torch discharge treatment are presented in the table. The
table lists the wetting angle values 0 for carbon fiber reinforced plastics and carbon fiber
reinforced plastics with a sublayer at various torch discharge treatment times. The first row lists
the 0 values for static treatment, the second row for blast treatment, and the third row for
treatment with a mesh.

It is evident that the strongest treatment effect is achieved in static mode, ie., with the
simultaneous action of the electron-ion component of the discharge and gaseous discharge
products. When exposed to the electron-ion component, the modification effect is slightly
weaker. Gaseous discharge products have either a very weak effect or no effect at all.

As can be seen from the table, the effect of an electric discharge is determined by the combined
action of the electron-ion component of the discharge and active gaseous compounds. A similar
conclusion was reached in [5] when studying the electrical aging of polymer films in a barrier
discharge.
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Wetting angle measurement data for different types of carbon fiber reinforced plastics

Table 1.

Material Material treatment time, min.

1 3 5
Wetting angle 6

Carbon fiber reinforced plastic 38 30 2
41 33 29
62 57 57
Carbon fiber reinforced plastic with 38 27 20
sublayer 40 35 34
75 70 70

The role of gaseous discharge products in the modification of carbon fiber reinforced plastics
with a sublayer is particularly evident. Since fiberglass is resistant to oxidation initiated by ozone
and nitrogen oxides, as can be seen from the table, exposure to gaseous compounds alone does
not cause changes in its adhesive properties. Therefore, if the effects of the discharge and its
gaseous products are simply cumulative, then the absence of the latter should not affect the
adhesion properties of carbon fiber reinforced plastics with a sublayer. However, it turned out
that for these materials, the presence of ozone and nitrogen oxides in the discharge zone
significantly enhances the change in adhesion properties.

In [6], it was shown that modification of carbon fibers in an ozone environment increases their
surface adhesion as a result of oxidation. IR spectroscopy after ozonation of the fibers revealed
the appearance of a broad band at 1050 cm-1, caused by the vibration of structural fragments
containing single C-O-C bonds. It is likely that during electric discharge treatment, with the
combined action of electron-ionic action and gaseous oxidants, adhesion should increase
significantly more than that obtained in [6].

8. Discussion of results

To determine the qualitative change in the carbon fiber surface after treatment in a torch
discharge, the IR transmittance spectra of the samples were studied. IR transmittance spectra
were recorded for powder obtained by scraping from the carbon fiber surface to a depth of 10
um. Powder, obtained from torch-exposed samples, as well as powder from untreated samples,
were sintered into pellets using low-melting chalcogenide glass as the base material. IR spectra
were then recorded using a SPECORD-751 setup.

Samples of fiberglass (the basis of the fiberglass sublayer in carbon fiber reinforced plastics with
a sublayer) and cured epoxy resin were also pelletized and exposed to a flare discharge. The
resulting IR transmittance spectra showed no noticeable changes in the treated fiberglass and
epoxy resin samples compared to the untreated ones. This may be due to the fact that exposure
to the discharge does not alter the chemical composition of the samples' surfaces.

In [7], no changes were noted in the epoxy resin after electric discharge treatment. In [8], non-
stoichiometric oxygen was detected on the surface during glow discharge treatment. It is
possible that such oxygen also forms after treatment of the fiberglass and epoxy resin, but IR
spectroscopy cannot detect it. In CFRP samples treated in a torch discharge, an intense broad
band appears at 1062 cm-1, which can be attributed to C-O vibrations. The observed increase in
the work of surface adhesion forces in reducing the wetting angle is associated with oxidation of
the CFRP surface and enrichment of the fiberglass surface with oxygen in the torch discharge.
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Control and torch-treated CFRP samples and CFRPs with a sublayer were coated with an Al
coating ~1 um thick using thermal sputtering and magnetron methods. Coating adhesion to the
surface, measured on a tensile testing machine, was 50-70% greater for the treated samples
compared to the untreated ones.

When a metal coating is sprayed onto the sample surface after torch discharge treatment, metal
atoms interact with non-stoichiometric oxygen and surface atomic groups, releasing
corresponding oxidation energy at the film-substrate interface. This process is accompanied by
the formation of valence bonds between substrate atoms and metal atoms through oxygen
bridges.

9. Conclusion

A similar conclusion was reached when processing glass in a glow discharge [8], and the
increase in adhesion of metals to glass after glow discharge treatment was explained by the
formation of an intermediate layer of oxidized condensate. Better results were obtained when
treatment in an oxygen-containing environment.

Treatment of carbon fiber reinforced plastics in a torch discharge in air leads to oxidation of the
surface, accumulation of non-stoichiometric oxygen in it, which causes an increase in the
adhesion of metal coatings applied to them.
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The paper presents the results of an experimental study of the effect of oil on the
heat transfer rate at boiling of mixed refrigerant R406A. Since the air condition-
ning system is not a pure refrigerant, but a mixture of oil with a concentration
of up to 8%, such an amount of oil affects both hydrodynamics and heat exchange

Available online in the evaporators. The experimental work covers the entire range of regime
Kelwords: parameters typical for these systems. There is shown the process of changing oil
heat transfer; concentration in the pipe, as the working fluid boils, proving that most of the oil
hydrodynamics; pipe does not im- pair the heat exchange in the course of two-phase flow boiling.
refrigerant; Different modes of refrigerant R406A boiling dynamics have been defined, and

each mode is given a quantitative assessment in terms of the effects of the oil and
explaining of this effect on the fluid flow and heat transfer based on visual
observations and the experiment results. The main factor of the effect is the
freon-oil foam, which increases the proportion of the wetted surface in the wave
and stratified modes and the heat transfer rate to 30%.

oil;
two-phase flow.

JEL classification: L64,Q41, Q42,033

1. Introduction

After the cessation of the use of popular freons, which were pure substances, in air conditioning
systems due to environmental requirements, multicomponent refrigerants were proposed
instead, for example R406A, which is a zeotropic mixture with significant non-isothermality
during phase transitions. This refrigerant boils in the pipes of evaporators or air coolers.
Evaporators with in-tube boiling have a lower charge of the working fluid, but also a lower heat
transfer coefficient during boiling, which leads to the need to increase the heat exchange surface.

The boiling of the refrigerant in the pipe determines the complex hydrodynamics of the two-
phase flow as the vapor content changes, which largely determines the intensity of heat transfer
[1,3]. All this speaks to the ambiguity and complexity of the heat transfer process during in-tube
boiling, which is aggravated by the presence of oil soluble in freon. At some operating
concentrations, oil foams and distorts the hydrodynamics of the flow and the intensity of heat
transfer during boiling. In addition, the presence of oil up to 8% significantly changes such
properties of the working fluid as viscosity, thermal conductivity, which will also affect heat
transfer.

" Corresponding author.
E-mail addresses: abaxsiyev@beu.edu.az (Bakhshiev Akif Bayram).
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To lubricate compressor parts, synthetic oil BSE 32 is used, which is highly soluble with freon
and circulates with it in the system. As confirmed by special studies [1], oil carryover from the
compressor is 0.4+1.2% of the working fluid and taking into account the separation of
approximately 50% in the oil separator, carryover to the condenser and then to the evaporator
will be 0.2+0.6 %. During in-tube boiling in the evaporator, as the refrigerant moves, the oil
concentration Em increases. Since no liquid should enter the compressor, it boiling off in the
evaporator should be almost complete, up to 90-95%. The remaining liquid refrigerant
evaporates in the heat exchanger and suction pipe, and clean oil enters the compressor in small,
non-hazardous portions.

2. Materials and results of the study

The experiments were carried out on a special stand with R406A refrigerant in a pipe 3.3 m long,
13 mm in diameter, with a wall thickness of 0.5 mm, made of 1X18HT steel. Range of changes in
operating parameters: mass velocity wo = 30+150 kg/(m2-s); boiling temperature to = 5+-20 °C;
heat flux density q = 110 kW/m2. Oil concentration at the pipe inlet Em = 0+4%. For visual
observations, glass tubes are installed at the inlet and outlet of the pipe.

In Fig.1 shows the change in o0il concentration along the length of the pipe in an evaporator with
in-tube boiling.
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Fig.1. Dependence Em = f(L) for complete boiling of the R406A refrigerant in an evaporator with in-tube
boiling at the initial oil concen 1 - Em =0.25%; 2 - E&m =0.5%; 3 - Em=1%

According to Fig.1 at the outlet of the evaporator pipe, the oil concentration Em does not exceed
5-6%, and in most of its part Em — 3%.

Previous studies have confirmed that when the oil concentration is less than 3%, the boiling
intensity of the refrigerant becomes greater than when the pure working substance boils [2]. It is
also noted that at Em < 0.4% the hydrodynamics of the refrigerant flow will not change, and at
high concentrations during boiling in the pipes foaming is observed, so the influence of oil on the
hydrodynamics of boiling R406A in the evaporator will certainly be affected.

The degree of influence of oil on heat transfer depends on the flow mode. The refrigerant enters
the evaporator after the throttling valve at a vapor content X = 0.1+0.15 kg/kg. This corresponds
to projectile or wave motion of the flow. The emulsion flow can be pumped.

In an emulsion flow, the addition of oil has virtually no effect on heat transfer, since heat transfer
a is determined mainly by the speed of fluid movement, and at such an oil concentration Em the
properties of the working substance practically do not change and there is no foaming.

145



Akif Bakhshiev, Asif Guliyev, N. A. Bakhshiev

The heat transfer coefficient can be calculated using the formula
Nu = 0,021 . ReO'S . Pr0,43 (1)

In the slug flow mode, the presence of oil also does not affect heat transfer, since the oil foam is
located inside the bubble and does not come into contact with the heat transfer surface [4]. And
in this mode, heat transfer acon is determined by the speed of the flow, and boiling aboil
intensifies heat transfer little.

When processing experimental data in slug mode, the dependence was obtained

3
a=0con V1+ aAcon- ac30n 2)

In equation (2), the heat transfer coefficient during forced convection of liquid ctcon is calculated
according to (1) based on the true fluid velocity, and aboil - according to the dependence

Nu = 2,38 Klg'zs - (Pe - Kto'63 . ng5)0,75 (3)

Where K;=1/g. /S/q -(p' —p') - characterizes the relationship between the heat of

evaporation and free-free energy of the surface layer.

In the wave mode, the presence of oil foam significantly increases the wetted surface. Under
conditions that corresponded to the wave regime for a pure refrigerant, in the presence of oil, the
entire heat transfer surface turned out to be wetted by a wave or oil foam.

In Fig.2 shows a graph of the temperature distribution along the pipe wall in one section in
relation to to in the wave mode with and without oil.

At
4 Em=0
3 EM=2%
-
H cP B Ccp H

Fig.2. Temperature distribution along the pipe wall in wave mode with and without oil at
w0 =100 kg/(m2 s); =2 kW/m2; P =0.539 MPa

At Em = 0, the temperature in the upper part of the pipe is higher than in the lower part, which is
explained by the presence of a dry wall.

The intensity of heat transfer associated with boiling is not yet high, since in these regimes
undeveloped boiling is observed.

Intensification of heat transfer in the presence of oil occurs mainly due to an increase in the
proportion of the wetted surface in the upper part of the pipe. The effect of oil on a in this mode
is ambiguous. As visual observations confirmed, at Em < 0.4% this influence does not exist, since
there is no foaming and the oil concentration practically does not change the properties of the
working fluid. An increase in Em > 3% leads to a decrease in heat transfer.

In Fig.3 and 4 show the increase in heat transfer coefficient in the presence of oil compared to o
of pure R406A refrigerant.
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Fig.3. Ratio of coefficients ot oil / a pure refrigerant in wave mode:
wo =50 kg/(m2s); q=2kW/m2; t=-10°C
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Fig.4. Ratio of coefficients a oil / a pure refrigerant in stratified mode:
wE =100 kg/(m2 s); q =2 kW/m2; t=-20 °C

At the beginning of the regime, which corresponds to stratification during boiling of a pure
refrigerant, the upper part of the pipe remains wetted with oil plugs, which move in large
volumes along the surface of the liquid or fly in small portions in the vapor volume. In Fig.5
shows the temperature distribution in the pipe section at the parameters that determine the
stratified flow regime of pure refrigerant.
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Fig.5. Ratio a/ax in the pipe section in stratified mode: wp =50 kg/(m2 s); q =2 kW/m2;
=-10°C; 1, 2 — at the beginning of the mode, 3, 4 — at the end of the pipe

The maximum heat transfer at the beginning of the mode is noted in the upper part, since it is
wetted by foam. At the end of the pipe with a vapor content of X = 0.90+0.95 kg/kg, the presence
of a low-boiling stream at the lower generatrix of the pipe with a small cap of foam was visually
noted. There is no foam in the steam area. Here, heat transfer determines the speed of steam
movement and the boiling point of a freon-oil solution with a high oil content.
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To determine the average heat transfer coefficient in a stratified mode of movement of a two-
phase flow, W/(m2 K), we can propose the dependence

Fw Fw
a=aj-—tay -(1—?)(4)

where, qj is the heat transfer coefficient of the boiling liquid; an is the heat transfer coefficient of
moving steam; Fw — wetted surface of the pipe section, m? F — pipe cross-sectional perimeter, m?

3. Conclusion
Calculation using formula (4) confirmed good agreement with the experimental results.

As a result of studying the effect of oil on the hydrodynamics and heat transfer of a two-phase
boiling flow of refrigerant R406A:

— calculation formulas and criterion dependencies were obtained that make it possible to
calculate the heat transfer coefficient during boiling of the R406A refrigerant with oil in the pipes
of the evaporators of cooling systems;

— the influence of oil on the hydrodynamics of a two-phase flow was assessed;

— the influence of oil on heat transfer during boiling was determined both over the cross-section
of the pipe and along its length.
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The article presents the mathematical modeling and simulation of
processes influencing the corrosion kinetics in oil pipelines on the
Absheron Peninsula. It has been determined that a high concentration of
chloride ions and an acidic environment intensify the kinetics of corrosion.
Under the influence of radiation, the main parameters of adsorption undergo
significant changes. The type of crystal lattice on the surface directly affects
the kinetics and energy of adsorption. Dislocation processes within crystal
structures can alter the adsorption mechanism by modifying the surface
characteristics of the material. Dislocation lines create local variations in
energy and stress on the crystal surface, leading to preferential accumulation of
adsorbates in these regions. The stress fields generated as a result of dislocation
processes reduce the energy barrier for adsorption on the surface, thereby
increasing the adsorption rate. Simulation results indicate that as the stress
level rises, the degree of surface coverage by adsorbates also tends to increase.
This finding demonstrates the strong influence of the dislocation mechanism
on adsorption. Thermodynamic parameters, particularly temperature and
Gibbs free energy, have a direct effect on adsorption and the kinetics of
corrosion.

‘Corresponding author.

E-mail addresses: yabdulazimova@beu.edu.az (Abdulazimova Yegana Ayyub).

1. Introduction

Corrosion is a naturally occurring phenomenon that results in the gradual degradation of metals

and alloys through chemical or electrochemical reactions with their environment [1]. This
process leads to significant economic losses, reduced structural integrity, and compromised
safety in various engineering systems [2]. Industrial infrastructures such as pipelines, bridges,

ships, and power plants are particularly vulnerable to corrosion, making its control and

prevention a major scientific and engineering challenge. The study of corrosion mechanisms
provides a foundation for developing effective protective strategies, including coatings,
inhibitors, and material selection [3]. Understanding the electrochemical behavior of metals in
different environments allows for the optimization of corrosion-resistant materials and the
design of long-lasting structures [4]. Moreover, recent advances in nanotechnology and surface
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engineering have opened new perspectives for enhancing corrosion resistance through the
development of smart and self-healing materials. Given the complexity of corrosion phenomena,
research in this field integrates principles of electrochemistry, materials science, and
environmental engineering [5]. Continuous investigation into the kinetics, thermodynamics, and
environmental factors influencing corrosion contributes to improving sustainability and
durability in modern industries [6,7].

2. Materials and methods

The analysis of corrosion in oil pipelines on the Absheron Peninsula is a highly relevant issue.
The optimal solution to this problem lies in the mathematical modeling and analysis of the
kinetics of the corrosion process in oil pipelines located on the Absheron Peninsula. The
simulation was carried out considering temperature, soil chemistry, and other significant
factors. Let us first consider the exponential model of corrosion kinetics. The kinetics of
corrosion can be described by the following exponential model:

m(t) = my-exp(—k-t) (1)
Here:
¢ m(t) - time-dependent mass (g/m?)
* my-initial mass (7850 g/m?)
e k- corrosion rate constant (1.1x10¢ s1)
e t—time (in seconds)
Figure 1 presents a graph illustrating the mass loss in oil pipelines due to corrosion over a 10-

year period:

mass loss of stell pipe (corrosion kinetics)
8000 | Corroded mass

HOO0
G000 |
5000

4000 ¢

Mass g/m2

3000 ¢

0 z a & ] 10
Time (year)

Figure 1. Graph illustrating the reduction of steel pipe mass in oil pipelines due to corrosion

As can be seen from the graph, the corrosion process leads to a very rapid mass loss, and within
approximately one year, the pipe material may undergo complete degradation.

To determine the optimal solution to this problem, let us examine the influence of internal factors
in the Absheron Peninsula. Specifically, we investigate the effects of internal parameters —
chloride ions, pH, and microstructure — on the corrosion process in oil pipelines. The model has
been calibrated using real data and expressed through a regression equation as follows:

Sample Ph [CI] (ppm) Microstructure (L) k_eff (1/s)
Sample 1 5.5 1000 0.9 2.0x10°
Sample 2 7.0 500 0.6 1.1 x10°
Sample 3 8.0 200 0.3 5.0 x 10”7
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The effective corrosion constant is modeled as follows:
Keff = ao + a; - [CI"] + a; - pH + a3 - 1 (2)
Here:
¢ [CI7] - concentration of chloride ions (ppm)
*  pH-acidity of the environment
* u-—microstructure parameter (defect density)
The following equation was obtained as a result of the multiple regression analysis:
Keff =32x10° + 1.5x107°-[Cl"] — 28%x 1077 -pH + 41%x 1077 -u(3)

The model indicates that high concentrations of chloride ions and an acidic environment
accelerate corrosion kinetics.

Developing a corrosion model for oil pipelines in the Absheron Peninsula that accounts for
external factors is one of the most important and significant aspects. In this study, the effects of
external factors—temperature, humidity, soil acidity, and chloride concentration—on the
corrosion process of oil pipelines in the Absheron Peninsula were mathematically modeled and
simulated.

The corrosion rate is given by the following equation:

CR =k - exp(—Ea /RT) - f(RH,p,pH,Cl") (4)

Here:

CR - corrosion rate (um/h),
T — temperature (in Kelvin),
Ea — activation energy,

R - universal gas constant,
f — a function of humidity, soil resistivity, pH, and chloride ion concentration.

The effects of external factors influencing the corrosion of oil pipelines in the Absheron Peninsula
were calibrated based on real samples, and the actual data used and the results obtained are
presented as follows:

Sample No | Temperature (°C) | Humidity (%) | pH | Salinity (g/L) Actual Corrosion Predicted

(mm/year) Corrosion
(mm/year)

1.0 28.0 75.0 6.8 2.5 0.32 0.34

2.0 33.0 85.0 59 |32 0.46 0.45

3.0 22.0 60.0 7.2 1.8 0.24 0.26

40 30.0 78.0 64 |29 0.39 0.37

5.0 35.0 90.0 56 |35 0.51 0.5

At the same time, the mathematical modeling and simulation of processes occurring in the
nucleus—namely, corrosion and its primary controlling processes—are mainly governed by
controlling factors. Specifically, nuclear processes, such as radioactive decay, nuclear reactions,
and energy emission, can influence the adsorption of atoms or molecules on the surface. This
influence primarily manifests in the following ways:
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- Thermal effect — energy emitted from the nucleus increases the surface temperature,
thereby altering the kinetics of adsorption.

- Radiation-induced structural changes — alters the atomic structure of the surface, which can
either enhance or reduce adsorption.

- Disturbance of electron clouds — energetic particles can catalyze adsorption.

Nuclear processes affect surface corrosion and adsorption primarily through three mechanisms:
energy activation, structural modification, and changes in electron levels.

In this section, the effect of nuclear energy (Q) on the adsorption transfer degree (0) was eva-
luated by comparing real samples with the theoretical model. For calibration, a simplified Lang-
muir model was used, and the results were fitted using regression (Table 1).

Table 1. Effect of nuclear energy on the adsorption transfer degree

Q (MeV) 0 observed 60 model 0O regression
0.50 0.120 0.645 0.090
1.00 0.190 0.971 0.216
1.50 0.310 0.998 0.343
2.00 0.480 1.000 0.470
2.50 0.630 1.000 0.597
3.00 0.710 1.000 0.724

Mathematical modeling of the effect of radiation on the mechanisms of corrosion and adsorption
is also a relevant issue. Radiation alters the adsorption mechanism, and these changes include:

- Increased surface activity;
- Acceleration of desorption kinetics;
- Disturbance of electron balance due to ionization and polarization.

Radiation affects the main parameters of adsorption. The model takes these changes into
account, allowing prediction of both the kinetic and thermodynamic aspects of adsorption.

Let us consider the mathematical modeling of the effect of electron density on the mechanisms of
corrosion and adsorption (on the Fe surface). In this study, the influence of electron density on
the kinetics of adsorption and the degree of surface coverage on Fe is analyzed using a mathe-
matical model.

Parameters for simulation conditions:

Parameter Value Additional Note

Qo 1.5x10% e/m® Initial electron density

A 0.1 pm™ Decay coefficient along the surface

r 0.01s™ Temporal decay coefficient

ka 0.03s™ Adsorption rate constant

k d 0.01 s Desorption rate constant

A 04 Electron density influence coefficient
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Change in the degree of surface coverage under the
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Figure 2: Graph of the change in surface coverage over time (on Fe surface)
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Figure 3: Graph of electron density variation with time and distance (on Fe surface)

Electron density directly affects the kinetics of adsorption. On the Fe surface, high electron
density leads to a faster increase in surface coverage.

The kinetics of corrosion in oil pipelines are also influenced by the crystal lattice and dislocation
mechanisms. The structure of crystal surfaces—namely FCC (Face-Centered Cubic), BCC (Body-
Centered Cubic) and HCP (Hexagonal Close-Packed) significantly affects the adsorption
mechanism. Since the atomic packing density, surface energy, and active area vary across these
surfaces, the probability and kinetics of adsorbate molecules binding to the surface also change.

Let us present an extended Langmuir model that takes the type of crystal surface into account:
0(t) = (Ki-P/(A +K_i-P)- -1 —er—ki-t)O®

Here: - O(t): Surface coverage (as a function of time)

- K_i: Adsorption constant (for crystal lattice type i)

- P: Gas pressure (or concentration)
- k_i: Adsorption kinetic constant

-i€ {FCC, BCC, HCP}

The adsorption constant is based on the Gibbs free energy:
Ki=KUO0-e*-AG_ads,i /RT) = KO0 - e*(—y_i - A_s,i /RT) (6)

- Y_i: Surface energy of crystal lattice type i
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- A_s,i: Surface area
- R: Universal gas constant
- T: Temperature (K)

Simulation conditions and parameters

Based on real data, the following results were obtained (for example, adsorption of N, or CO on
Fe, Cr, or Ti surfaces):

Crystal Type v_i (J/m?) A_s,i (nm?) K_i (1/atm) k_i(1/s)
FCC (Fe, Cu) 245 1.2 0.8 0.15
BCC (Cr, Mo) 2.15 1.6 0.6 0.12
HCP (Zn, Ti) 1.85 2.0 0.5 0.10
Crystal Type vY_i (J/m?) A_s,i(nm?) K_i (1/atm) k_i(1/s)

- FCC metals (e.g., Fe, Ni): High surface atomic density — high adsorption energies
- BCC metals (e.g., Cr): Moderate adsorption
- HCP metals (e.g., Ti, Zn): Weaker adsorption bonding

The type of crystal lattice on the surface directly affects the kinetics and energy of adsorption.
The mathematical model, taking these differences into account, serves as a powerful tool for
predicting the dynamics of the adsorption process. In crystal structures, dislocation processes
influence the surface properties of the material, thereby altering the adsorption mechanism.
Dislocation lines create local variations in energy and stress on the crystal surface, causing
adsorbates to preferentially occupy these regions. In this study, the effect of dislocation
mechanisms on adsorption was mathematically modeled and simulated.

Considering the dislocation mechanism, the kinetics of adsorption is modeled as follows:
6 = [K-P-exp(—(Ea — f-0.d)/(RT))]/[1 + K-P-exp(—(Ea — B -0.d)/(RT))] (7)

Here: O - degree of adsorption coverage

K - adsorption constant

P - partial pressure

Ea - activation energy

o_d - stress generated due to dislocations

[ - coefficient representing the effect of stress energy
R - universal gas constant

T — temperature

Effect of dislocation stress on adsorption

06}

0.2}

oD}

Degree of surface coverage in adsorption

T 0.5 'IIZI 1.5 2.0 7.5
Dislocation stress (Pa) ied

Figure 4. Effect of stress generated by the dislocation mechanism on adsorption coverage
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Stress fields generated by dislocation processes reduce the energy barrier for adsorption on the
surface, thereby increasing the adsorption rate. Simulation results showed that as the stress level
increases, the surface coverage of adsorption also tends to increase. This finding demonstrates
the dislocation mechanism has a strong influence on adsorption.

527 Mass loss

o S0 i i ] 1500 FLiii] Pl P00 2500

Time (s)
Figure 5. Effect of the dislocation mechanism on mass loss over time

An important aspect affecting the kinetics of corrosion in oil pipelines is the mathematical
modeling and simulation of the thermal effect of adsorption. The thermodynamic basis and the
thermal effect of adsorption in the Langmuir adsorption model are expressed as follows:

= M(l + K(T): ©) (8)
Here: O — surface coverage

C - concentration of the adsorbate,
K(T) — adsorption constant dependent on temperature

The temperature dependence of K(T) is expressed using the Van’t Hoff equation:
K(T) = Ko - exp(—4H_ads / (RT)) (9)

AH_ads - enthalpy of adsorption (kJ/mol),
R — universal gas constant
T — temperature (K).
In this case, the corrosion rate is modeled as follows:

Veorr(T) = Vo - (1 —-6(T)) =Vo-(1 - (KT -C)/A + K(T)- C)) (10)
Here:
V_corr(T) — corrosion rate as a function of temperature
V, — corrosion rate in the absence of inhibitors

As the temperature increases, if AH_ads < 0 (exothermic adsorption), K(T) decreases, O
decreases, and the corrosion rate increases. The increase in desorption weakens the protective
layer, exposing the surface to greater corrosion. Real data (for calibration):
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Temperature (K) Experimental Vcorr (mm/year) Model Model (mm/year)
298 0.12 0.11
308 0.18 0.17
318 0.26 0.25
328 0.33 0.31
338 041 0.38

Taking the thermal effect of adsorption into account is critically important for inhibitor selection.

Inhibitors with exothermic adsorption may lose their effectiveness at high temperatures. This

model allows optimization of pipeline protection strategies according to thermo-mechanical

conditions.

3. Conclusion

1.

L

High concentrations of chloride ions and an acidic environment accelerate corrosion
kinetics.

Radjiation alters the main parameters of adsorption.
The type of crystal lattice on the surface directly affects the kinetics and energy of adsorption.

Dislocation processes in crystal structures influence surface properties of the material,
thereby altering the adsorption mechanism. Dislocation lines create local variations in
energy and stress on the crystal surface, causing adsorbates to preferentially occupy these
regions.

Stress fields generated by dislocation processes reduce the energy barrier for adsorption on
the surface, thereby increasing the adsorption rate. Simulation results showed that as the
stress level increases, the surface coverage of adsorption also tends to increase. This finding
demonstrates that the dislocation mechanism has a strong influence on adsorption.
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1. Introduction

It is well known that the failure of electrical equipment can lead to various injuries among
operational personnel, disruption of technological processes, and severe accidents. Therefore,
specific tests are conducted in advance to prevent such issues. In general, these tests are carried
out in the following cases: commissioning of equipment or installations, after an accident,
following scheduled or unscheduled maintenance, or after a certain period since the last
inspection. Notably, high-voltage insulation testing of electrical equipment is mandatory for
isolated neutral power networks with voltages up to 35 kV [1, 2].

In isolated neutral networks, performing high-voltage insulation tests under load conditions is of
particular relevance for identifying potential equipment failures in advance and ensuring the
uninterrupted power supply to consumers [3, 4]. Research conducted in this field indicates that
various methods and tools have been proposed for such testing [5-7].

In [8], a method for testing insulation under load in isolated neutral networks is proposed.
According to this method, artificial transient ground faults are created in the network based on
Petersen's theory in order to test the insulation under load conditions. It should be noted that
during such ground faults, the magnitude of overvoltage caused by arcing in the network
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depends on the ground fault resistance, the ground fault angle, and the phase-to-ground
capacitance of the network. Therefore, determining the ground fault resistance and angle in
advance is essential for accurately selecting the test voltage. For this purpose, it is a relevant and
important task to determine the dependence of arc overvoltage multiplicity —arising from
transient ground faults in isolated neutral networks—on ground fault resistance, ground fault
angle, and phase-to-ground capacitance of the network.

2. Problem statement

In general, to determine the dependencies among the aforementioned parameters, it is necessary
to perform a numerical solution of the system of differential equations characterizing the
transient process of single-phase earth fault in neutral isolated networks, using modern
computational technologies. However, the numerical solution of this problem is considerably
complicated due to the stiffness of the mentioned differential equations. In other words, since the
system of differential equations is nonlinear, in some cases the stability of the solution is
compromised and the results become distorted. Therefore, to overcome such difficulties, it is
essential to obtain analytical expressions defining the dependencies of the arc overvoltage
multiplicity (k) on the earth fault resistance (R,), the earth fault angle (¢), and the phase-to-
earth capacitance of the network (Cy). It should be noted that for this purpose, the analytical
dependencies of the arc overvoltage multiplicity on the earth fault resistance have been studied
in [9,10], on the earth fault angle in [11,12], on the phase-to-earth capacitance in [13,14], and on
both the earth fault resistance and the phase-to-earth capacitance in [15]. Continuing these
studies, this work considers the derivation of a regression model describing the dependence of
single-phase arc overvoltage in neutral isolated networks on the earth fault resistance and earth
fault angle.

3. Problem solving

The derivation of an analytical expression for the dependency of the arc overvoltage multiple,
occurring during single-phase faults in an isolated neutral electrical network (C; = const), on
the earth fault resistance and earth fault angle is considered. For this purpose, the results of
experimental investigations conducted on a low-voltage model of an isolated neutral network
(Cf = 1mkF ) are utilized, as presented in Table 1 [8].

Table 1.: Dependence k = f(Ry, ¢)

®
Ro, Ohm 30° 60° 90° 120° 150°
5 2,45 316 3,30 310 2,16
10 2,29 2,91 2,96 2,86 2,03
15 2,16 2,69 2,77 2,66 193
20 2,05 2,51 2,62 2,49 184
25 1,96 2,35 2,49 2,35 176
30 1,88 2,22 2,38 2,24 1,69

As seen from Table 1, the dependence between the multiple of the arc overvoltage, the ground
fault resistance, and the ground fault angle can be approximated by the following regression
equation [16]:

k:Riersin p+c, (1)

0

here, a, b, c — are regression coefficients.
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If we introduce the substitutions Ri = x and sin ¢ =y in equation (1), the regression equation
0

can be written in the following form:
k=ax+by+c, (2)

In other words, the dependence of the arc overvoltage multiplicity (k) on the conductivity of the
ground fault circuit (x) and the sine of the ground fault angle (y) can be approximated by a
linear regression equation (see Table 2). The choice of this model type is based on the assumption
that if the variation of the output variable is directly proportional to the variations of the factor
variables, then a linear model is considered adequate [17].

Table 2.: Dependence k = f(x,y)

X y
[Sm] 0,500 0,366 1,000 0,866 0,500
0,200 245 3,16 3,30 3,10 216
0,100 2,29 2,01 2,96 2,86 2,03
0,067 216 2,69 2,77 2,66 193
0,050 2,05 2,51 2,62 2,49 184
0,040 1,96 2,35 2,49 2,35 176
0,033 188 2,22 2,38 2,24 1,69

The regression coefficients of equation (2) are defined by the following well-known expressions
[17]:

)

oK), ) -rly(cy)
o(x)  1-r’(xy)
k; r(k,y)—r(k,x)r(x,y)

where M(x), M(y) and M(k) denote the mathematical expectations (means) of the variables X, y,
and k, respectively; o(x), o(y), and o(k) denote the standard deviations of the variables x, y, and
k, respectively; r(x,y) is the linear correlation coefficient between x and y; r(kx) is the linear
correlation coefficient between k and x; and r(k,y) is the linear correlation coefficient between k
andy.

The numerical values of the necessary statistical indicators for determining the regression
coefficients and identifying the target model are calculated based on the correlation matrix
presented in Table 3. The following notation is used for the correlation matrix:

A =(x =MX))’; B =(y, =M(y))’; C; = (k —M(k));

E = (4 =M(X))- (v = M(y));P =k =M (k))- (x ~M(x)); T; =k =M (k))- (y; -M(y))

i :aaXi +by|i+c_ki|; N; :(axi +hy, +c—ki)2'

L
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Table 3.: Correlation Table
Xi Vi ki Ay B G E; P; T L N;

0,200 0,500 245 0,01400278 0,06071797 0,001708 -0,02915854 0,0048911 -0,0101850 0,028818943 0,004985265
0,200 0,866 3,16 0,01400278 0,01430781 0,564502 0,01415447 0,0889078 0,0898709 0,022324562 0,004976684
0,200 1,000 3,30 0,01400278 0,06430781 0,794475 0,03000813 0,1054744 0,2260331 0,000706912 5,44199E-06
0,200 0,866 3,10 0,01400278 0,01430781 0,477942 0,01415447 0,0818078 0,0826940 0,003401812 0,00011121
0,200 0,500 2,16 0,01400278 0,06071797 0,061835 -0,02915854 -0,0294256 0,0612740 0,166947412 0,130036983
0,100 0,500 2,29 0,00033611 0,06071797 0,014082 -0,00451752 -0,0021756 0,0292407 0,08192638 0,035198042
0,100 0,866 291 0,00033611 0,01430781 0,251335 0,00219295 0,0091911 0,0599671 0,082049292 0,05700798
0,100 1,000 2,96 0,00033611 0,06430781 0,303968 0,00464915 0,0101078 0,1398125 0,027213051 0,006488404
0,100 0,866 2,86 0,00033611 0,01430781 0,203702 0,00219295 0,0082744 0,0539863 0,066001202 0,035631636
10 0,100 0,500 2,03 0,00033611 0,06071797 0,143388 -0,00451752 -0,0069422 0,0933073 0,035659403 0,005240108
11 0,067 0,500 2,16 0,00022500 0,06071797 0,061835 0,00369615 0,0037300 0,0612740 0,091211737 0,038815837
12 0,067 0,866 2,69 0,00022500 0,01430781 0,079148 -0,00179423 -0,0042200 0,0336518 0,058799026 0,025017553
13 0,067 1,000 2,77 0,00022500 0,06430781 0,130562 -0,00380385 -0,0054200 0,0916305 0,010814646 0,000897396
14 0,067 0,866 2,66 0,00022500 0,01430781 0,063168 -0,00179423 -0,0037700 0,0300633 0,048183977 0,01642739
15 0,067 0,500 193 0,00022500 0,06071797 0,229122 0,00369615 0,0071800 0,1179483 0,017089455 0,001087855
16 0,050 0,500 2,05 0,00100278 0,06071797 0,128642 0,00780299 0,0113578 0,0883791 0,076448938 0,024561259
17 0,050 0,866 2,51 0,00100278 0,01430781 0,010268 -0,00378782 -0,0032089 0,0121210 0,019072649 0,002291762
18 0,050 1,000 2,62 0,00100278 0,06430781 0,044662 -0,00803034 -0,0066922 0,0535920 0,019213916 0,002534162
19 0,050 0,866 2,49 0,00100278 0,01430781 0,006615 -0,00378782 -0,0025756 0,0097287 0,011193715 0,000776868
20 0,050 0,500 1,84 0,00100278 0,06071797 0,323382 0,00780299 0,0180078 0,1401252 0,028956347 0,002838724
21 0,040 0,500 1,96 0,00173611 0,06071797 0,201302 0,01026709 0,0186944 0,1105560 0,055378625 0,011781388
22 0,040 0,866 2,35 0,00173611 0,01430781 0,003442 -0,00498397 0,0024444 -0,0070174 0,029917391 0,004942915
23 0,040 1,000 2,49 0,00173611 0,06430781 0,006615 -0,01056624 -0,0033889 0,0206253 0,055629991 0,019187424
24 0,040 0,866 2,35 0,00173611 0,01430781 0,003442 -0,00498397 0,0024444 -0,0070174 0,029917391 0,004942915
25 0,040 0,500 1,76 0,00173611 0,06071797 0,420768 0,01026709 0,0270278 0,1598381 0,051964713 0,008364547
26 0,033 0,500 1,88 0,00233611 0,06071797 0,279488 0,01190982 0,0255522 0,1302688 0,03001239 0,003183588
27 0,033 0,866 2,22 0,00233611 0,01430781 0,035595 -0,00578140 0,0091189 -0,0225674 0,077668775 0,02973027
28 0,033 1,000 2,38 0,00233611 0,06430781 0,000822 -0,01225684 0,0013856 -0,0072696 0,092704827 0,048680901
29 0,033 0,866 224 0,00233611 0,01430781 0,028448 -0,00578140 0,0081522 -0,0201751 0,068046732 0,023233283
30 0,033 0,500 1,69 0,00233611 0,06071797 0,516482 0,01190982 0,0347356 0,1770868 0,079039472 0,017842737
* | 2450 | 22392 | 7226 | 009819444 | 128615612 | 5,390747 0,00000000 0,4106667 1,998843 1,4663 0,5668

o |®|[Nfon|ur e |w | =]~

The data array consists of a volume of n=30, and the values of the statistical indicators necessary
for determining the coefficients, obtained as a result of calculations, are presented below.

Zn: X; = 2,45; Zn: Yy, = 22,392, Zn:ki =12,26;
i=1 i=1 i=1
zxi Z yi ilﬂ
M (x)= lT =0,082; M(y)= 1T =0,746; M (k)= 1T = 2,409;
Zn;(xi —M(x))* =0,09819444; zn:(yi ~M(y))’ =1,28615612; zn:(ki ~M (k) =5,390747;
i=1 i=1 i=1
3 (%, =M (X, =M (y))=0; 3" (K, ~M (k) M (x)) = 04106667;
i=1 i=1
3 (k =M ()My, ~M (y))=1998843
i=1
Z”:|axi +by, +c—k; | 14663
= k|
Zn:(axi +by, +c—k, )’ =0,5668.
i=1

Based on Table 3, variances, root mean square deviations, two-dimensional covariance
coefficients (correlation moments), and two-dimensional correlation coefficients for individual
quantities are calculated using well-known formulas. The obtained numerical values are as
follows:
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n n

2,06 =M > (i ~M ()Y
D(x)==—r =0,00327; D(y)=-=——o —0,04287;

n

2k =M (K)y

D(k)= - =0,17969;

o(x)=/D(x)=0,0572; o(y)=+/D(y)=0,2071; o(k)=./D(k)=0,4239;
> (x =M ()y, ~M(y) 3 (kM (k))x, ~M (x)

cov(x,y) == - =0; cov(k,x) == - =0,01369;

n

2 (ki =M (k)Xy; —M(y))

cov(k,y) == - =0,06663;

cov(Xx,y) cov(k, x) cov(k,y)
") = 50py) /DK)D(X) /D(K)D(y)

Then, based on expressions (3), the estimated values of the regression coefficients of equation (1)

=0; r(k,x) = —0,56444; r(k,y) = =0,75911.

or (2) are obtained as follows:
a=418; b=155; c=0,91.

Thus, once the regression coefficients have been determined, the relationship (2) between the
multiplicity of the arc overvoltage arising during single-phase non-stationary ground faults in
isolated neutral networks, the conductivity of the ground fault loop, and the sine of the ground
fault angle can be explicitly expressed as follows:

k = 4,18x + 1,55y + 0,91, (4)

Let us verify the adequacy of the obtained regression dependence (4) between the conductivity
of the single-phase transient ground fault circuit and the sine of the ground fault angle in relation
to the overvoltage multiplicity during single-phase non-stationary ground faults. To do this, we
can calculate the multiple correlation coefficient and assess its significance using the Fisher
criterion [17].

The value of the multiple correlation coefficient is determined by the following well-known
expression:

2 2

R |7 (k, )+ r?(k, y)—2r(k, x)r(k, y)r(x,y) _ 0.95.
1-r*(xy)

A multiple correlation coefficient close to one (R = 0,95 — 1) indicates that the relationship

between the recurrence of arc overvoltages, the conductivity of the ground fault circuit, and the
sine of the ground fault angle can be considered a strong linear correlation.

The significance of the multiple correlation coefficient is tested using the F-Fisher criterion. It is
known that, at a significance level of a, the regression equation is considered adequate if the
condition F > F(a, q4, q,) is satisfied [17], where q; and q, are the degrees of freedom.
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The empirical value of the F-Fisher criterion, based on the given data, is determined as follows:

o R® n-m-1
1-R*  m

» (5)
Here, n is the number of experiments, n = 30; m is the number of factors, m = 2. According to
equation (5), the value of F = 125,4.

The critical value of the Fisher criterion F is obtained from the table depending on the
significance level (a) and the degrees of freedom (q,, g,) [17]:

=005 g =m=2,q,=n-m-1=30-2-1=27; F(a,q,,0,) = 3,35.

Since F = 125,4 > F(a, q1,q,) = 3,35, the multivariate correlation coefficient (R = 0,95) and the
statistical significance of the regression equation are confirmed.

The mean relative error and the mean square error of the approximation are determined by the
following known expressions, respectively:

P =%Zn:|axi +byii“'_ki|-100%=4,89<%);

i=1 | i

n

Z(axi +by, +C—ki)2

o=+ =0,137.
n

The determination coefficient of R? = 0,95% = 0,9025 indicates that 90,25% of the variation in
the arc overvoltage multiplication factor (k) is primarily caused by changes in the ground fault
circuit conductance (x) and the sine of the ground fault angle (y), while the remaining variation
9,75 % is attributed to other unaccounted factors.

Thus, the dependence of the arc overvoltage multiplication factor on the ground fault resistance
and the ground fault angle in neutral isolated networks under non-stationary ground faults can
be explicitly expressed as follows:

k= % +1,55sin ¢ + 0,91, (6)

0

As can be seen, during single-phase transient ground faults, the regression model obtained in the
form of equation (6) represents a simple and practically applicable relationship between the
parameters.

Based on the regression equation derived using the OriginLab software [18], a 3D (spatial)
representation of the dependency of the arc overvoltage multiplication factor on the ground fault
resistance and the ground fault angle has been constructed (Figure 1).
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o =d

Figure 1. 3D visualization of the dependence of arc overvoltage multiplicity
on ground fault resistance and ground fault angle

4. Conclusion

1.

[1].

2].

[3]-

[4].

[5]-

[6].

A practically implementable regression model has been developed to describe the depen-
dence between the arc overvoltage multiplicity, ground fault resistance, and ground fault
angle in neutral-isolated networks subjected to non-stationary ground faults governed by
the Petersen theory.

The obtained regression model can be readily applied for insulation testing under load
conditions in neutral-isolated networks of the Azerenergy system, as well as for the
investigation and analysis of results related to non-stationary ground faults occurring in the
network.
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