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Gas lift equipment has a special place in oil extraction. This method has an 

important place among mechanized methods. This method is used to increase the 

longevity of the wells, and at the same time, when the productivity of the wells 

decreases, to increase the pressure at the bottom of the well by supplying gas to 

the space behind the well, to raise oil to the surface. 

Gas lift valves are one of the main components of the equipment complex used in 

wells using the gas lift method. Depending on the characteristics of the wells, it 

is required to meet complex requirements from the gas lift valves, among which 

the provision of tightening is one of the important problems. In order to ensure 

effective tightening in gas lift valves, it is of great importance to choose the 

construction, dimensions of tightening elements, as well as the criteria of 

tightening correctly. 

From this point of view, the solution of scientific-practical problems related to 

the design and calculation methodology of tighteners that can create reliable 

tightening in gas lift valves can be considered as one of the actual problems of 

production and exploitation of modern oil field equipment. 

Keywords: 

Oil field equipment; 

gas lift valves; 

deformation; 

compression; 

tightening. 

 

JEL Classification: 

TA350, TA405, QA808, TJ840 

 

1. Introduction 

The study of the tensıon-deformation state is one of the important problems in providing reliable 

hermeticity at high pressures in the gas lift equipment's tightening component. Theoretical 

studies lay the foundation for solving of this problem by accepting certain approximations, but 

in order to prove the theoretical results, there is a need to accept the results of experimental 

research. 

A complicated tensıon-deformation state is created in the tightening component between the 

tightening elements, as well as in their touch with the contact surface (body).  

At this stage of the research works, the tensıon-deformation state was studied by an 

experimental method. For this purpose, the following have been determined - variable pressure 

P  acting on the head surface of the tightener; 

- axial force distributed on the tightening contact surface – Qt, 

- the total tighting force applied to the tightening component. 

The following approximations were accepted when solving the problem: 
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- the height of the tightened cylinder is the same; 

- local radial and axial loads are equally distributed on the tightening surface. In this case, the 

axial load is replaced by its equivalent static tangential force. 

*Corresponding author. 

E-mail addresses: omirzayev@beu.edu.az (Mirzayev Osman Hasan). 

2. PROBLEM STATEMENT  

 

 

Fig. 1 1.1. General view of the gas lift well: 

1- fountain armature, 2- well chamber, 3- punched fastener, 4 - gas lift valve, 5- packer, 6- intake valve, 7- nipple 

 

Experiments were carried out on gas lift valves with both existing and offered tightening 

components. Constructions of tightening components are shown in Fig. 2 a and b, respectively. 

The tightening component of the offered gas lift valve differs from the existing structure in that, 

in order to reduce relaxation tensions in the rubber cuffs, lead rings are placed in the sockets of 

the tightening cuffs [3]. 
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Fig. 2 a. An existing tightening component 

 

Fig. 2 b. A tightening component of the new construction 

1 – a cover, 2 and 3 – rubber cuffs, 4 and 5 – lead rings, 6 – a silphon body 

It is known that the tightening component of gas lift valves consists of two sets of oppositely 

directed tightening elements with a conical profile. For this reason, when the tighteners are 

placed in the chamber (cylinder) of the gas lift valve, loading of tightening has a great role. 

Table 1 shows the location state and the number of the tighteners. 

Table 1. The location state of the tighteners while tightening 

No. of 

experiments 
The location state of the tighteners involved in tightening 

The number of the tighteners 

involved in the contact 

1 The I set of the tightening elements meets the contact surface 3 

2 The middle surface of the tightening elements is in contact 2 

3 The I set and the II set of the tighteners are in contact 6 

The radial deformation diagram of the displacement is given in figure 5.5. It is seen from the 

figure that the dependence 
2r

z  of the displacement in the tighteners on dimensionless relative 

axial coordinate varies with the exponential law. From this one can conclude that the radial 

displacement is not equally distributed on the axial height in the set of tighteners. 

P

T

r1 r2

lyla

lk
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Fig. 3. The radial deformation of the displacement in the tightener.  

The change diagram of pressure-dependent tensions in  the tighteners is given in figure 4 and the 

change diagram of the force tangent to the contact line in them is given in   figure 5. 

 

Fig. 4. The change diagram of pressure-dependent tensions in the tighteners with D=32 mm: 

 1- z  (r=r1 ); 2- z (r=r1 ); 3- z (r=r2 ) 

 

Fig. 5. The change diagram of the force tangent to the tightening contact surface 
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The dependence of the axial tension on dimensionless relative axial coordinates is shown in 

figure 5.8. 

 

Fig. 6. The dependence of the axial tension on axial coordinate: 

ly – the upper (I) set, la – the lower (II) set of tighteners. 

22
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r

l
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r

l
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3. PROBLEM SOLUTION 

The II stage of the experiments is devoted to the study of the tension-deformation state created in 

the tighteners with a new shape due to tighting force and pressure. 

In the tests, breaking the hermeticity by providing the stepwise increase of the tension on the 

contact surfaces and the increase of the pressure between 10-50 MPa, as well as self-tightening 

were performed. According to each step of tension or pressure, the tension and deformations on 

the inner and outer contact surfaces of the tightening element were measured. 

The results of the experiments for the newly offered tighteners (with outer diameters 29, 32, 

40) are given in figure 8-14. 

 

Fig. 7. The change diagram of the axial tension in the new-shaped tighteners: 

1-D=29 mm; 2-D=32 mm; 3-D=40 mm 
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Fig. 8. The change diagram of the tangential tension in the new-shaped tighteners: 

1-D=29 mm; 2-D=32 mm; 3-D=40 mm 

 

Fig. 9. The change diagram of the tangential tension in the new-shaped tighteners: 

1-D=45 mm; 2-D=48 mm; 3-D=50 mm 

 

Fig. 10. The change diagram of the axial tension in the new-shaped tighteners: 

1-D=45 mm; 2-D=48 mm; 3-D=50 mm; 
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Fig. 11. The dependence of the radial displacement on the radial pressure in the new-shaped tighteners: 

 -D= 45mm; -D= 48mm; -D=50mm. 

In existing tighteners (for loading states I and II in table 5.1), the radial displacement is obtained 

at a value that does not satisfy the tightening limit –U, and such an effect is typical for both 

tension and pressure application cases. 

 

Fig. 12. The dependence of the radial tension on the total tighting force in existing tighteners: 

1-D=29 mm; 2-D=32 mm; 3-D=40 mm 

Characters of dependences of axial and tangential tensions on local loads tQ  for different loading 

regimes in the tightener with the size 29 according to table 1 are given in figures 13 and 12. 

 

Fig. 13. The dependence of the axial tension on the tighting force: 1- ; 2- ; 3- ;  
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Fig. 14. The dependence of the tangential tension on the tighting force: 

1- ; 2- ; 3- ; 

It is seen from the results of the experiment that the values of the radial displacement and the 

tangential tension depend more on the radial load, and the axial force reduces their value. 

It has been determined by the researches that depending on the loading mode of the tightening 

elements on the contact surface, the tensions increase with the increase of pressure, but their 

decrease is observed because of the influence of local loads. Also, since in the new-shaped 

tightening elements, tightening is obtained by a total contact, the value of the tensions is 

sufficient so that tightening occurs with equal contact surfaces (with tightening elements both the 

I set and the II set). In this case, distributions of tensions and the radial displacement satisfy 

Lame's law in the new-shaped tighteners. 

4. CONCLUSIONS 

So, an additional elastic element placed in a special slot in the tightening component reduces the 

effect of local loads, in this case, an equal distribution of the radial tension is observed. At the 

same time, the values of the radial tension are greater than the existing tightening component, 

and self-tightening is ensured under the direct and inverse influence of the pressure. 
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In this work, a static analysis of a cylindrical shell made of glass fiber reinforced 

composite material was performed. The static analysis was performed using the 

simulation application in the Solidworks program. For this purpose, a 

cylindrical cover with a diameter of 50mm and a length of 100mm was 

designed. The surface command was used in the Solidworks program to design 

the part. A composite material consisting of three layers reinforced with glass 

fiber was selected as the material. The boundary conditions and loading cases of 

the cylindrical shell were applied in accordance with real operating conditions. 

The distribution of Von Mises stress, normal stresses along the X and Y axes 

and deformations were analyzed across the layers. As a result of the analysis, 

both intra-layer and inter-layer stress and deformation distributions were 

determined, and areas with particularly high stress concentrations were 

identified. 

Keywords:  

Composite material;  

Von Mises stress;  

cylindrical shell;  

layer;  

deformation. 
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1. Introduction 

In modern engineering, the demand for lightweight, high-strength and corrosion-resistant 

structures is increasing. Among them, cylindrical shells made of composite materials dominate. 

This type of cylindrical shells is widely used in aerospace, shipbuilding, automotive industry, 

energy and pipeline infrastructure. Their mechanical behavior depends on the homogeneity and 

heterogeneity of the material, the asymmetry of its structure and the design of the cylindrical 

shell, the applied loads and the placement conditions. Numerical simulation plays an important 

role for this. Here it is possible to evaluate the load-bearing capacity of cylindrical shells, 

optimize the design and identify their weak points. 

The mechanical behavior of composite cylindrical shells has been studied in many scientific 

works. In [1], [2], the methods for calculating the elasticity constants of parts made of composite 

materials were given and the stability theories of cylindrical shells were improved. The effect of 

the directions of lifts and the sequence of layers in composite materials on the mechanical 

behavior was studied in [3]. In [5], stress analyses were performed on structural parts made of 

composite materials using the finite element method. The results of this analysis were shown to 

be consistent with both analytical and experimental results. The problem of crack formation in 

parts made of composite materials was studied in [6]. 

*Corresponding author. 

E-mail addresses: nzayev@beu.edu.az (Rzayev Natig Samandar). 
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In general, the literature review shows that for an accurate assessment of the behavior of 

composite cylindrical shells, it is necessary to take into account the combined effects of the 

properties of the layers, fiber orientations, boundary conditions and loading type. The 

application of modern programs such as SolidWorks Simulation allows for a comprehensive 

analysis of these parameters and allows the results to be correlated with real engineering 

applications. 

In this article, the static behavior of a three-layer glass fiber composite cylindrical shells is 

investigated using SolidWorks Simulation. The main focus is on the analysis of stress and strain 

distribution, differences in loading across layers and identification of potential weak areas. The 

aim of the article is to evaluate the behavior of composite shells from both theoretical and 

applied perspectives and to provide a basis for future optimization work. 

2. Materials and Methods 

2.1. Cylindrical shells design and material selection 

The mechanical properties of the material are as follows: 

E-fiber glass: 

Density: 2,58g cm-3; 

Tensile strength: 3,445Gpa; 

Youngs modulus: 72,3Gpa; 

Elongation: 4,8% 

Poissons ratio: 0.2. 

Test specimen dimensions: Outer diameter 25mm; length 100mm; 

Number of layers -3. All layers are assumed to be of the same material. The angle for the first 

layer is 150, for the second layer 300 and for the third layer 450. 

Applied force: 1000N. The sample is fixed on one side. A force of 1000N is applied across its 

surface. 

Mesh sizes: 2.5mm and 0.125mm. 

Proqram: Solidworks (simulation) . 

 

Fig. 1. 3D model of a cylindrical shell made of composite material. 

A cylindrical part made of a composite material consisting of three layers was designed. The 

thickness of each layer was chosen to be 0.5mm. All layers were assumed to be made of the same 
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material. The angle for the first layer was assumed to be 150, for the second layer 300, and for the 

third layer 450. In total, the angles for the layers changed in 150-degree intervals (Figure 1). 

2.2. Static analysis of a cylindrical shell 

 After applying the material properties to the 3D model in layers, boundary conditions must be 

accepted. For this purpose, a cylindrical part made of composite material is fixed along its two or 

three surfaces along the circumference (fixed geometry fastening type is selected). A force of 

1000N is applied along the surface of the sample. The force is distributed at equal values along 

the surface of the cylindrical part (Figure 2). 

 

Fig. 2. Application of boundary conditions. 

To determine the distribution of stress and strain along the layers of the part, a mesh property 

must be applied. The size of the mesh parameters affects the accuracy of the results. For this 

purpose, mesh parameters with sizes of 2.5mm and 0.125mm along the layers of the composite 

part were adopted (Figure 3). 

 

Fig. 3. Applying mesh parameters to a composite part by layers. 

Analysis of stresses in the first layer of the composite part. First, the analysis of the Von Mises 

stress was carried out. The minimum value of this stress was observed at points close to the 

hardening zone of the sample, and the maximum value was observed in the linear direction in 

the middle zones. The maximum and minimum values of the stress were obtained as 1.012e+00 

Mpa and 3.278e-01MPa, respectively. The results of the linear simulation analysis of the Von 

Mises stress show that the maximum values of the stress were distributed in the linear direction 

outside the hardening zone (Fig. 4 a). The maximum value of the stress along the X axis was 

9.016e-03Mpa, and the minimum value was -1.116e+00 MPa. The maximum value of the stress 

along the Y axis was 8.581e-02Mpa, and the minimum value was -1.099e+00. The distributed 

values of the stresses along the X and Y axes are given in Fig. 4, b, c. 
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a)      b) 

 c) 

Figure 4. Stress distribution across the first layer of the composite part. 

Stress distribution in the second layer of the composite part: The maximum value of the Von 

Mises stress in the second layer was 1.062e+00Mpa and the minimum value was 3.798e-01MPa. 

The maximum value of the stress was distributed linearly along the two middle surfaces where 

the layer was located, in the direction of the fibers. The minimum value of the stress was 

observed in the reinforcement zones. From this, a neutral zone was formed along the 

circumference between the stress zones (Figure 5 a). 

The maximum values of the stresses along the X and Y axes in the second layer were 7.778e-

02MPa and -7.043e-04MPa, respectively; the minimum values were 1.083+00 MPa and -1.132e+00 

MPa. The maximum and minimum values of the stress along the X axis were formed in symmet-

rical sections along the length and were observed near the reinforcement zones (Figure 5 b, c). 

a)     b) 
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 c) 

Figure 5. Stress distribution in the second layer of the composite part. 

Stress distribution in the third layer of the composite part: The maximum value of the Von Mises 

stress in the third layer was observed along the circumference in the reinforcement zone. This 

value is 1.668e+00 MPa, respectively. The minimum value of this stress was 3.931e-01, and it was 

distributed in a certain width band along the circumference, partially outside the reinforcement 

zone (Fig. 6 a). The maximum and minimum values of the stresses along the X axis are observed 

to be distributed in reciprocal segments along the longitudinal section. The values of these 

stresses were obtained as 9.506e-03MPa and -1.153e+00MPa, respectively (Fig. 6 b). 

The distribution zone of the maximum value of the stress along the Y axis is relatively small. This 

stress is observed in small segments along the axis of the cylinder. The distribution zone of the 

minimum values is relatively large. The minimum stress is observed along the axis of the 

cylinder. The minimum and maximum values of the stresses are -1.169e+00 MPa and -1.218e-03 

MPa, respectively (Figure 6 c). 

 a)    b) 

 c) 

Figure 6. Stress distribution across the third layer of the composite part. 
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Distribution of deformation along the layers of the composite part: The minimum value of 

deformation for all three layers is distributed in the zones close to the fastening surface, while the 

maximum values are distributed along the circumference in the fastening zones, partially on the 

outer surfaces. The numerical value of deformation has the smallest value in the fastening zones.  

a)     b) 

c) 

Figure 7. Distribution of deformation in the layers of a composite part. 

As it moves away from the middle zone, the deformation increases, reaches a maximum value, 

and then decreases sharply. The maximum value of deformation for the first layer is 9.622e-06, 

the minimum value is 3.68e-06; in the second layer, 1.025e-05 and 3.926-06, respectively, and in 

the third layer, 1.121e-05 and 5.526-06 were obtained (Fig. 8). 

3. Conclusion and discussions 

In the research work conducted, the static behavior of a cylindrical shell reinforced with three 

layers of glass fibers was analyzed using the finite element method in the SolidWorks Simulation 

environment, and a number of important scientific and practical results were obtained. 

1. The analyses showed that the stress distribution is not homogeneous throughout the 

cylindrical shell, but is concentrated more in the boundary areas and interlayer zones. This 

is especially noticeable when the elastic moduli of the layers and fiber directions are 

different. Local stress concentration was assessed as the main factor increasing the 

probability of damage to the cylindrical shell. 

2. The ply arrangement and fiber orientation in a composite cylindrical shell have a significant 

impact on the overall strength and deformation behavior of the structure. While 
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circumferential fiber arrangement increases the resistance to internal pressure, axial fiber 

arrangement increases the deformation stiffness. Thus, the optimal ply selection should be 

determined according to the functional requirements of the structure. 

3.  Analysis of strain distributions showed that the three-layer composite structures exhibited a 

nonlinear mechanical response compared to simple isotropic cylinders. The mechanical 

properties and orientation angles of each layer changed the overall elastic properties, 

leading to the formation of both maximum displacements and local deformations. 

4.  Modeling based on SolidWorks Simulation software allowed to predict the static behavior of 

the composite cylindrical coatings with high accuracy. 

The results of the study show that not only the choice of material, but also the sequence and 

direction of the layers should be taken into account when designing composite cylindrical shells. 

This approach allows to increase the reliability of the structure during operation, prevent 

excessive stresses and ensure long-term durability. Simulation-based approaches in this direction 

can contribute to achieving more optimal, reliable and economical design solutions in both 

production and scientific research processes in the future. 
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The dynamics of the membrane potential and recovery mechanism of biological 

neurons during migraine attacks with aura were mathematically modeled using 

the FitzHugh-Nagumo nonlinear stochastic differential equation system. The 

degree of influence of the membrane potential on the recovery mechanism, the 

degree of self-regulation of the recovery mechanism, and the stochastic resonance 

intensity coefficients affecting both components were determined using a fully 

connected neural network. This study addresses a significant gap in computa-

tional neuroscience by integrating stochastic differential equations with machine 

learning to characterize neuronal behavior during pathological conditions. 

Traditional electroencephalography (EEG) analysis methods primarily rely on 

time-frequency decomposition and statistical techniques, identifying fundamen-

tal signal characteristics but remaining disconnected from mechanistic stochas-

tic neuronal models. Our approach combines the biophysically realistic FitzHugh-

Nagumo framework with neural network-based parameter estimation using 

EEG recordings, enabling precise quantification of key biophysical parameters 

governing neuronal excitability and recovery processes. The identified para-

meters provide quantitative measures of membrane dynamics and stochastic 

fluctuations characterizing migraine pathophysiology, offering potential biomar-

kers for clinical diagnosis and personalized treatment strategies. 
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 fully connected neural networks; artificial 

intelligence;  
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1. Introduction 

Electroencephalography (EEG) tests are essential neurological diagnostic methods used to record 

and analyze brain wave activity (Niedermeyer & da Silva, 2004). EEG plays an important role in 

diagnosing various neurological conditions by recording the synchronized activity of cortical 

neurons, particularly valuable for studying rapid neurophysiological changes in disorders such 

as migraine with aura (Wolpaw et al., 2002). 

EEG signals consist of waves with varying amplitudes and frequencies, divided into five types: 

delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (>30 Hz) (Steriade et 

al., 1993). Each wave type is associated with specific cognitive and physiological states and 

reflects distinct patterns of neuronal synchronization across cortical networks (Buzsáki & 

Draguhn, 2004). Delta waves occur during deep sleep and are characterized by high amplitude 

and low frequency, representing widespread synchronization of cortical neurons.  
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 Theta waves relate to emotional states (Deco & Jirsa, 2012), memory encoding, and creative 

processes, particularly prominent in the hippocampus and temporal regions.Alpha waves 

predominate in relaxed but awake states (Klimesch, 1999), typically observed when individuals 

are at rest with eyes closed, and are most prominent in posterior brain regions. Beta waves are 

associated with active thinking, focus, and motor activity, reflecting desynchronized cortical 

states during cognitive engagement. Gamma waves represent the highest frequency oscillations 

and are linked to sensory processing, attention, and consciousness, often considered markers of 

neural integration across distributed brain networks (Buzsáki, 2006). Understanding these 

patterns is crucial for identifying abnormal neuronal activities during migraine aura episodes, as 

pathological states often manifest as alterations in the power, coherence, and spatial distribution 

of these frequency bands. Migraine with aura involves cortical spreading depression (CSD), 

characterized by neuronal depolarization waves followed by activity suppression propagating 

across the cortex at approximately 2-5 mm/min, which produces characteristic changes in EEG 

patterns during aura phases.The FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 

1962), a simplified version of the Hodgkin-Huxley model, effectively describes neuronal 

dynamics through differential equations. Its stochastic extension captures inherent biological 

randomness, making it well-suited for modeling pathological conditions like migraine aura 

(Gardiner, 2004; Wiesenfeld & Moss, 1995). Despite advances in mathematical neuroscience, 

existing approaches have limitations. Izhikevich (2007) contributed significantly to modeling 

neuronal dynamics but did not deeply address stochastic effects and parametric analysis of EEG 

data. Traditional EEG analysis methods using time-frequency techniques (Delorme & Makeig, 

2004; Lotte et al., 2007) revealed signal characteristics but lacked integration with stochastic 

neuronal models. Deco and colleagues (Deco & Jirsa, 2012; Deco et al., 2008) studied stochastic 

processes in neural models but did not apply artificial neural networks for systematic parameter 

estimation from clinical data. 

This work addresses these gaps by integrating machine learning with stochastic differential 

equations. We employ a multi-layer perceptron (MLP) neural network with ADAM optimization 

(Kingma & Ba, 2015) to estimate five key biophysical parameters from EEG data: internal self-

regulation (a), membrane potential influence (b), neighbor influence (c), and stochastic resonance 

intensities (𝜎𝑅 , 𝜎𝑃). Using 1230 EEG recordings from migraine patients, we validate our 

approach and solve the stochastic system using the Milstein numerical method. 

This study contributes to clinical neuroscience by providing quantitative biomarkers for 

migraine aura, enabling early detection and personalized treatment strategies. The paper is 

organized as follows: Section 2 reviews related work, Section 3 presents the stochastic FitzHugh-

Nagumo model, Section 4 describes the MLP parameter estimation methodology, Section 5 

shows visualization results, Section 6 details the numerical solution, Section 7 presents 

experimental findings, and Section 8 concludes with future directions. 

2. Related works 

The intersection of EEG analysis, mathematical modeling of neuronal dynamics, and artificial 

intelligence methods has been the subject of extensive research in recent years. This section 

reviews key contributions in these domains and positions the current study within the broader 

research landscape. The Hodgkin-Huxley model established the foundation for mathematical 

neuroscience by providing a detailed biophysical description of action potential generation. 

However, its computational complexity motivated the development of simplified models. 
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FitzHugh (1961) and Nagumo et al. (1962) independently developed a two-variable model that 

captures the essential excitable dynamics of neurons while maintaining computational 

tractability. This model has been extensively used to study various neuronal phenomena, 

including oscillations, bursting, and synchronization (Izhikevich, 2007). Stochastic extensions of 

the FitzHugh-Nagumo model have been developed to account for inherent randomness in 

biological systems. Wiesenfeld and Moss (1995) investigated the role of noise in neuronal 

dynamics and demonstrated that stochastic fluctuations can enhance signal detection through 

stochastic resonance. Glass (2001) further explored how noise affects the dynamics of excitable 

systems and their response to periodic stimuli. These studies established the theoretical 

foundation for incorporating stochastic processes into neuronal models but did not address 

parameter estimation from experimental data. Traditional EEG analysis has relied heavily on 

spectral methods and statistical approaches. Niedermeyer and da Silva (2004) provided 

comprehensive coverage of EEG interpretation in clinical settings, establishing standards for 

identifying pathological patterns. Buzsáki (2006) and Buzsáki and Draguhn (2004) explored the 

rhythmic nature of brain activity and its relationship to cognitive processes, emphasizing the 

importance of oscillatory dynamics in neural computation. Klimesch (1999) specifically analyzed 

how alpha and theta oscillations reflect cognitive and memory performance. 

For migraine research, several studies have characterized EEG patterns during and between 

attacks, noting alterations in various frequency bands. Machine learning methods have been 

applied to classify migraine EEG patterns, demonstrating the potential of artificial intelligence in 

clinical diagnosis (Lotte et al., 2007). However, these studies focused primarily on pattern 

recognition rather than underlying biophysical mechanisms. The phenomenon of cortical 

spreading depression (CSD) is widely recognized as the neurophysiological correlate of migraine 

aura. Mathematical models of CSD propagation have demonstrated how reaction-diffusion 

equations can capture the spatial dynamics of spreading depression waves. These studies have 

provided detailed mechanistic insights into ionic mechanisms and neurotransmitter roles in CSD 

initiation and propagation but have not integrated stochastic modeling with machine learning 

approaches for parameter estimation from clinical data. 

The application of artificial intelligence methods to neuroscience has expanded rapidly. LeCun et 

al. (2015) and Goodfellow et al. (2016) established deep learning foundations that have been 

applied to various neuroscience problems. Delorme and Makeig (2004) developed EEGLAB, an 

open-source toolbox for EEG analysis that has become widely used. Lotte et al. (2007) reviewed 

classification algorithms for EEG-based brain-computer interfaces, while Schmidhuber (2015) 

provided a comprehensive overview of deep learning in neural networks. Neural networks have 

been employed for parameter estimation in dynamical systems, with methods capable of 

discovering governing equations and estimating parameters from noisy data. The ADAM 

optimization method (Kingma & Ba, 2015) has proven particularly effective for training deep 

neural networks. However, these methods have not been specifically applied to estimate 

biophysical parameters of stochastic neuronal models from EEG data in migraine patients. 

While previous studies have made significant contributions in mathematical modeling of 

neurons, EEG analysis, and AI methods separately, there remains a gap in integrating these 

approaches for studying migraine aura. Existing mathematical models often lack direct 

connection to clinical EEG data, while EEG analysis methods typically do not incorporate 

biophysically realistic stochastic models. Furthermore, although machine learning has been 

applied to EEG classification (Cortes & Vapnik, 1995; Duda et al., 2001), its use for estimating 



Analysis of Migraine Aura Based on Eeg Tests Using Artificial Intelligence Methods 

93 

specific biophysical parameters of neuronal dynamics remains underexplored. This study 

addresses these gaps by: (1) employing a stochastic FitzHugh-Nagumo model that captures both 

deterministic dynamics and random fluctuations relevant to migraine aura, (2) using a fully 

connected multi-layer perceptron neural network to estimate five key biophysical parameters 

(𝑎, 𝑏, 𝑐, 𝜎𝑅 , 𝜎𝑃) directly from EEG band power recordings, (3) applying the Milstein numerical 

method (Kloeden & Platen, 1992) for accurate solution of the stochastic differential equation 

system, and (4) validating the approach on a comprehensive dataset of 1230 EEG recordings 

from migraine patients with aura.  

3. Mathematical model of the migrain attack process 

The FitzHugh-Nagumo model plays an important role in the scientific and research field of 

modeling neurological biomedical processes, measuring the dynamics of biological neurons, and 

understanding the excitation and recovery patterns in neural tissues. This model, which is a 

simplified version of the Hodgkin-Huxley model, describes the electrode impulses occurring in 

biological neurons as a system of differential equations (FitzHugh, 1961). The excitation, 

membrane potential and recovery mechanisms of biological neurons are modeled together and, 

as a result, are explained by complex processes such as the interaction of biological neurons, the 

generation and transmission of impulses. The stochastic model is widely used to study not only 

the specific behavior of specific neurons, but also the general dynamics in biological neural 

networks. The synchronization rules of electrode-based impulses in neural networks, that is, the 

parallel electrode-based impulse transmission of neurons, play an important role in various brain 

functions such as attention, memory and sensory processing (Glass, 2001). This system also 

explains the stopping or delay processes in the patient's neural networks during pathological 

conditions such as epilepsy. During epileptic seizures, excessive synchronization of neurons 

leads to abnormal impulse activity. The mathematical elegance of the FitzHugh-Nagumo model 

lies in its reduction of the four-dimensional Hodgkin-Huxley system to a two-dimensional 

framework, capturing the essential nonlinear dynamics of neuronal excitability while 

significantly reducing computational complexity (Nagumo et al., 1962). This dimensionality 

reduction is achieved by grouping fast variables related to membrane potential dynamics and 

slow variables associated with recovery processes, enabling efficient simulation of large-scale 

neural networks. The model exhibits rich dynamical behavior including stable fixed points, limit 

cycles, and bifurcations that correspond to different physiological states of neurons such as 

resting, oscillatory, and excitable regimes (Izhikevich, 2007). One of the key advantages of the 

FitzHugh-Nagumo framework is its ability to reproduce qualitatively similar dynamics to more 

complex biophysical models while maintaining analytical tractability for studying phase 

transitions and stability properties. 

The incorporation of stochastic components into the FitzHugh-Nagumo model is essential for 

capturing the inherent variability observed in biological systems, arising from sources such as 

random channel openings, synaptic noise, and fluctuations in ion concentrations (Gardiner, 

2004). Stochastic resonance, a phenomenon where optimal levels of noise enhance signal 

detection and transmission, has been extensively studied using stochastic versions of the 

FitzHugh-Nagumo model (Wiesenfeld & Moss, 1995). This phenomenon is particularly relevant 

in understanding how biological neurons can reliably transmit information despite noisy cellular 

environments and has implications for understanding sensory processing and neural coding. In 

the context of migraine with aura, the stochastic FitzHugh-Nagumo model provides a natural 
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framework for representing the complex interplay between deterministic cortical spreading 

depression dynamics and random fluctuations that influence the initiation, propagation, and 

termination of aura episodes. 

Furthermore, the FitzHugh-Nagumo model has been successfully applied to simulate various 

pathological neural conditions beyond epilepsy, including Parkinson's disease tremors, cardiac 

arrhythmias, and sleep disorders, demonstrating its versatility as a computational tool in 

biomedical research (Deco et al., 2008). The model's parameters can be interpreted in terms of 

biophysical quantities such as membrane capacitance, ionic conductances, and recovery time 

constants, providing a direct link between mathematical abstractions and physiological 

mechanisms. Recent advances in numerical methods for stochastic differential equations, 

particularly the Milstein method (Kloeden & Platen, 1992), have enabled accurate simulation of 

stochastic FitzHugh-Nagumo systems with proper treatment of both drift and diffusion terms, 

ensuring reliable reproduction of statistical properties observed in experimental recordings.  

Therefore, we will use a nonlinear stochastic FitzHugh-Nagumo differential equation system to 

model the electrodical activity of neurons in the patient's brain during migraine attacks [Eq. 1].  

Thus, 

{
𝑑𝑃 = (𝑃 −

𝑃3

3
− 𝑅) 𝑑𝑡 + 𝜎𝑃  𝑑𝑅𝑃

𝑑𝑅 = (𝑎 + 𝑏 ⋅ 𝑃 − 𝑐 ⋅ 𝑅)𝑑𝑡 + 𝜎𝑅  𝑑𝑅𝑅

    (1) 

For this equation; 

𝑃[𝑡]: [0, 𝑇] → ℝ - is an upper bounded function defined in real Euclidean space that determines 

the stochastic dynamics of the membrane potential of biological neurons varying with time. 

𝑅[𝑡]: [0, 𝑇] →∈ ℝ - determines the dynamics of the stochastic recovery mechanism of a biological 

neuron. 

𝑎 ∈ ℝ  - is the positive internal self-regulation parameter of a biological neuron. 

𝑏 ∈ ℝ  - is a parameter describing the degree of influence of the membrane potential on the 

stochastic recovery mechanism. 

𝑐 ∈ ℝ - is a parameter describing the degree of influence of neighboring neurons on the recovery 

mechanism [22]. 

𝜎𝑅  𝑑𝑅𝑅 - is a Wiener process, defined by a Gaussian distribution in real Euclidean space, and 

describes the stochastic resonance affecting the recovery mechanism [2], [27]. 

𝜎𝑝  𝑑𝑅𝑝  - is a Wiener process defined by a Gaussian distribution in real Euclidean space, descri-

bing the stochastic resonance affecting the dynamics of the membrane potential [5], [10], [27]. 

In this section, we have established the mathematical foundation for modeling migraine aura 

dynamics using the stochastic FitzHugh-Nagumo differential equation system. The proposed 

model captures both the deterministic aspects of neuronal membrane potential and recovery 

mechanisms, as well as the stochastic fluctuations inherent in biological systems through Wiener 

processes. The five key parameters (𝑎, 𝑏, 𝑐, 𝜎𝑅 , 𝜎𝑃) in the system represent biophysically 

meaningful quantities: internal self-regulation, membrane potential influence on recovery, 

neighbor neuron interactions, and stochastic resonance intensities affecting both membrane 

dynamics and recovery processes. This formulation provides a rigorous mathematical 
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framework that connects theoretical neuronal dynamics with observable EEG patterns during 

migraine attacks with aura. The challenge now lies in estimating these parameters from 

experimental EEG data, which requires sophisticated machine learning techniques capable of 

handling the nonlinear and stochastic nature of the system. In the following section, we address 

this challenge by developing a multi-layer perceptron neural network architecture specifically 

designed for parameter estimation from EEG frequency band features. 

4. Parameter setting with multi-layer perceptron regressor 

When solving a system of stochastic differential equations, since there are often no obvious 

analytical forms of the functions sought, approximate solutions of such systems are found by 

numerical methods. In the deterministic part of the system of equations under consideration, we 

were able to describe the dynamics of neurons with nonlinear components [14]. It is known that 

the stochastic part of the system (𝑑𝑅𝑅, 𝑑𝑅𝑃) describes the Wiener process, and the Milstein 

method expresses this nonlinear process more precisely. 

Before considering the numerical solution of the differential equation system considered in [Eq. 

1] using the Milstein method, let us build a multi-layer perceptron regressor model with a fully 

connected neural network to determine the values of the coefficients 𝑎, 𝑏, 𝑐 in the deterministic 

part of the system and 𝜎𝑅 , 𝜎𝑃 in the stochastic part. For this, based on 1230 EEG tests of patients 

with migraine with aura taken from the databases [7], [18], we obtain a five-dimensional dataset 

as a result of eight-dimensional dataset preprocessing that reflecting the average mutual 

electrode conduction amplitudes between the frontal (F), frontopolar (Fp), temporal (T), central (C), 

parietal (P) and occipital (O) lobes of the brain. The feature vector [Eq. 2] of this dataset contains 

delta, theta, alpha, beta and gamma brain waves [1] as attributes. 

   𝑋 = [𝛿, 𝜃, 𝛼, 𝛽, 𝛾 ]      (2) 

In the output layer of the constructed neural network [25], we can see a 5-dimensional row 

matrix [Eq. 3] that contains the parameters in the system [Eq. 1]. 

𝑌 = [𝑎, 𝑏, 𝑐, 𝜎𝑅 , 𝜎𝑃]  (3) 

Also, based on the medical-mathematical studies conducted [15], we can give the following [Eq. 

4] rule for the parameters that we will estimate with the multi-layer perceptron regressor. 

  𝑌𝑡𝑟𝑢𝑒 = [𝑋1 + 𝑋2 − 𝑋3, 𝑋4 + 𝑋5, 𝑋3 + 𝑋5,
1

𝑋1+𝑋2
,

1

𝑋4+𝑋5
]    (4) 

For the constructed neural network, the ReLU activation function is used, taking into account the 

nonlinearity of the system [Eq. 1] For a fully connected neural network [12] consisting of two 

hidden layers, the results for each hidden layer are found using the following [Eq. 5 – Eq. 6] 

formulas. 

𝐻1 = 𝑅𝑒𝐿𝑈(𝑊1 ∙ 𝑋 + 𝑏1) = max (0, 𝑊1 ∙ 𝑋 + 𝑏1) (5) 

𝐻2 = 𝑅𝑒𝐿𝑈(𝑊2 ∙ 𝐻1 + 𝑏2) = max (0, 𝑊2 ∙ 𝐻1 + 𝑏2)   (6) 

During the calculation performed over 1000 iterations, the ratio of test and train phases was set 

according to the Pareto principle (80% - 20%). The output vector containing the estimated values 

[21] is given in [Eq. 7] below. 

 𝑌𝑝𝑟𝑒𝑑 = 𝑊3 ∙ 𝐻2 + 𝑏3   (7) 
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The formulas used to determine the values for the weight coefficients and bias, which are 

iteratively determined during training [19], are given below. 

𝑊𝑡+1 = 𝑊𝑡 − 𝛼 ∙
𝛿𝑀𝑆𝐸

𝛿𝑊𝑡
    (8) 

𝑏𝑡+1 = 𝑏𝑡 − 𝛼 ∙
𝛿𝑀𝑆𝐸

𝛿𝑏𝑡
     (9) 

As seen in [Eq. 8] and [Eq. 9], when setting new values for the weights and bias in each iteration, 

we find the effect of the previous values of the weights and bias on the multivariate continuous 

MSE function [7], [24] representing the mean square error by the chain rule. 

For the optimization of the constructed neural network model, the adaptive moment estimation 

method (ADAM method) [17], which is an improved version of the stochastic sradient descent 

method (SGD method) that is resistant to gradient non-stationarity, was used. In this method, the 

predicted value of the first moment, i.e. the average gradient value – 𝑚̂𝑡, and the predicted value 

of the second moment, i.e. the mean of the squares of the gradients – 𝑀𝑆𝐺, are calculated in each 

iteration. With the following formula [Eq. 10], the optimal value of each parameter under 

consideration in the i-th iteration - 𝑓𝑖 is found by taking into account the learning rate – 𝜂, the 

adaptive scaling factor based on the second moment of the gradient - √𝑣̂𝑡 + 𝜖, and the average 

gradient with reduced bias effects - 𝑚̂𝑡 , and the MSG values in the considered formula [Eq. 10]. 

(𝜖 − is a small constant to prevent division by zero, e.g.10−12).  

𝑓𝑖+1 = 𝑓𝑖 −
𝜂

√𝑀𝑆𝐺+𝜖
𝑚̂𝑡      (10) 

Thus, the neural network constructed in the research study under consideration has the 

following characteristics in Table 1. 

Table 1. Characteristics of ANN 

Structure of ANN Multi-Layer Perceptron (MLP) 

Raw dataset size 1230 x 8 

Preprocessed dataset size 1230 x 5 

Input layer neurons 5 

Output layer neurons 5 

Hidden layers 2 

Neurons for each hidden layer 64 

Activation function ReLU 

Epoch 1000 

Train and test percentage 80%-20% 

Optimisation method ADAM method 

Model performance evaluation Mean Squared Error (MSE) 

 

In this section, we have developed a comprehensive framework for estimating the biophysical 

parameters of the stochastic FitzHugh-Nagumo model using a multi-layer perceptron neural 

network. The proposed architecture consists of an input layer with five neurons corresponding 

to EEG frequency bands (delta, theta, alpha, beta, gamma), two hidden layers with 64 neurons 

each utilizing ReLU activation functions, and an output layer producing five parameter 
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estimates (a, b, c, σ_R, σ_P). The network was trained on a preprocessed dataset of 1230 EEG 

recordings from migraine patients with aura, employing the ADAM optimization method over 

1000 epochs with an 80%-20% train-test split. The theoretical relationship between EEG features 

and model parameters, expressed through the ground truth formula, provides a physiologically 

motivated mapping that the neural network learns to approximate. The use of the Milstein 

method for numerical solution requires accurate parameter estimates, which our MLP regressor 

provides by minimizing mean squared error between predicted and true parameter values. The 

trained network achieved a mean squared error of 0.1475, demonstrating reasonable 

convergence and the ability to extract meaningful biophysical parameters from complex EEG 

signals. Having established the parameter estimation methodology, we now turn to the visual 

analysis of EEG data and the trained neural network's performance in the next section. 

5. Visual representation and output of artificial neural network 

The above-mentioned 1230x8 datasets were constructed based on the EEG tests of 1230 different 

patients [7], [18], and the `delta`, `theta`, `alpha`, `beta`, `gamma`, `age`, `gender` and 

`clinical_condition` feature vectors were constructed. In order to take into account biological 

variability and potential biases in the constructed dataset, as well as to normalize the data during 

the data preprocessing stage, the Z-score method was used. The condition of 𝑧_𝑠𝑐𝑜𝑟𝑒 > 3 was set 

to exclude outlier data from the dataset, and we select an equal number of each age group to 

create a suitable balance in the `gender` and `age` columns. Finally, we fill in the empty values in 

the dataset with the ~𝑓𝑓𝑖𝑙𝑙~ method. 

Based on the dataset prepared based on the EEG images of migraine patients with aura [20], 

visualized the EEG images of a migraine patient with an average aura in [Fig. 1]. According to 

the prepared dataset, abnormal dynamics are observed in the brain waves during the aura 

phases of migraine attacks in patients. Thus, while the brain waves change within specific 

normal ranges in the first 3 seconds of the EEG test [6], the upper and lower limits of these waves 

in the aura phases go out of the range of values [13].  

There are many alternative approaches to parameter estimation in the considered stochastic 

differential equation system. Estimating parameters with simpler statistical models, for example, 

a linear regression model, is not considered convenient. Because [Eq. 1] is nonlinear, and also the 

relationship between brain waves based on EEG tests is nonlinear [8], [11] and is sensitive to 

biological bias. In particular, it is known that although the SVM model can be applied in the case 

of nonlinear dependencies, since the considered dataset is multidimensional and the considered 

model is stochastic, this method is not considered effective, since we cannot choose the kernel 

function [3] accurately and explicitly. However, the considered multilayer perceptron regression 

model uses optimization methods [12], [17] for bias and parameter estimation in each subsequent 

epoch. This helps us to find more accurate predicted values of the parameters. 

Based on the neural network we built above, we can see the estimated values of the parameters 

in the system [Eq. 1] and the dynamics of the aura phase. Thus, we can substitute the estimated 

values of the parameters with the lowest mean square error rate in the system and solve the 

system of stochastic differential equations under consideration by the Milstein method. 

In this section, we have presented the visual analysis of EEG data from migraine patients with 

aura and demonstrated the performance of our trained multi-layer perceptron neural network. 

The preprocessing pipeline, which employed Z-score normalization, outlier removal (𝑧𝑠𝑐𝑜𝑟𝑒 >
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3), balanced sampling across age and gender groups, and forward-fill imputation for missing 

values, ensured data quality and reduced potential biases in the dataset. The visualization of 

average EEG test results clearly revealed the characteristic dynamics of migraine aura phases, 

showing that brain wave amplitudes during aura episodes deviate significantly from normal 

ranges observed in the initial phases of recording. While the first three seconds of EEG tests 

exhibited brain waves within physiologically normal bounds, the subsequent aura phases 

demonstrated abnormal upper and lower limit excursions across all frequency bands, 

confirming the pathological nature of cortical spreading depression. The trained MLP regressor 

successfully predicted parameter values with a mean squared error of 0.1475, demonstrating its 

capability to capture the nonlinear relationships between EEG frequency features and the 

underlying biophysical parameters of the stochastic FitzHugh-Nagumo model. The comparison 

between true and predicted outputs for test samples validated the effectiveness of our approach, 

though some discrepancies highlight the inherent complexity and variability in biological data. 

With the estimated parameters now available, we proceed to solve the stochastic differential 

equation system numerically to reproduce the membrane potential and recovery mechanism 

dynamics during migraine aura. 
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Fig 1. Average EEG Test result and aura phases during migraine attack. 

Mean Squared Error value of MLP: 0.14754897042460963 

Test label 1: True output: [0.37454012 0.95071431 0.73199394 0.59865848 0.15601864] 

Predicted output: [0.60182965 0.09548657 0.44884072 0.55707213 0.39711602] 

Test label 2: True output: [0.15599452 0.05808361 0.86617615 0.60111501 0.70807258] 

Predicted output: [0.82112403 0.26972085 0.6645957  0.75420339 0.67455758] 

6. Numerical solution of problem 

The choice of numerical method for solving stochastic differential equations is crucial for 

obtaining accurate and reliable results. For the stochastic FitzHugh-Nagumo system under 

consideration, the Milstein method was selected over simpler approaches such as the Euler-

Maruyama method due to several important advantages. The Euler-Maruyama method, while 

computationally simpler, only accounts for the first-order terms in the stochastic Taylor 

expansion and has a weak convergence order of 1.0 and strong convergence order of 0.5 

(Kloeden & Platen, 1992). For the nonlinear stochastic system described in Equation (1), 

where both the drift and diffusion terms exhibit complex dependencies on state variables, the 

Milstein method achieves strong convergence of order 1.0, representing a substantial 

improvement over Euler-Maruyama (Gardiner, 2004).  

Furthermore, the Milstein method preserves important statistical properties of the stochastic 

process more accurately than lower-order schemes, including the correct variance growth rate 

and correlation structure between membrane potential and recovery variables (Kloeden & 

Platen, 1992). This is essential for capturing stochastic resonance effects, where the interplay 

between deterministic dynamics and noise can enhance signal detection and information 

processing in neuronal systems (Wiesenfeld & Moss, 1995). Alternative higher-order methods, 

such as Runge-Kutta schemes for stochastic differential equations, would require significantly 

more function evaluations per time step without providing substantial accuracy improvements 

for our specific application. 

The Milstein method improves the values of the functions sought at each subsequent step for 

both the deterministic and stochastic parts of the system during the numerical solution of 

stochastic differential equations [16]. It is known that we can write the obvious recurrence 

relation [Eq. 12] for the deterministic [Eq. 10] and stochastic [Eq. 11] parts of the system of 

stochastic differential equations under consideration. 

{
𝑓𝑃(𝑃, 𝑅) = 𝑃 −

𝑃3

3
− 𝑅

𝑓𝑃(𝑃, 𝑅) = 𝑎 + 𝑏 ∙ 𝑃 + 𝑐 ∙ 𝑅
   (10) 

{
𝑔𝑃(𝑃) = 𝜎𝑃

𝑔𝑅(𝑅) = 𝜎𝑅
      (11) 

{
𝑃𝑛+1 = 𝑃𝑛 + 𝑓𝑃(𝑃, 𝑅) ∙ 𝜏 + 𝑔𝑃(𝑃𝑛)𝛥𝑅𝑃 +

1

2
𝑔𝑃

′ (𝑃𝑛)𝑔𝑃(𝑃𝑛)((𝛥𝑅𝑃)2 − 𝜏)

𝑅𝑛+1 = 𝑅𝑛 + 𝑓𝑅(𝑃𝑛 , 𝑅𝑛) ∙ 𝜏 + 𝑔𝑅(𝑅𝑛)𝛥𝑅𝑅 +
1

2
𝑔𝑅

′ (𝑅𝑛)𝑔𝑅(𝑅𝑛)((𝛥𝑅𝑅)2 − 𝜏)
  (12) 

Here, as seen in [Eq. 13], the values of (𝑑𝑅𝑃, 𝑑𝑅𝑅)) considered for each of the functions characte-

rizing the membrane potential and recovery mechanism of neurons are selected according to the 
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values of a sufficiently small 𝜏 and a normally distributed random variable at each time instant. 

∆𝑅 = √𝜏 ∙ 𝒩(0,1)    (13) 

Thus, in [Fig. 2], an approximate solution of the stochastic FitzHugh – Nagumo differential 

equation system [Eq. 1] was found using the Milstein method, with initial conditions 𝑃(0) = −1 

and 𝑅(0) = 0, step 𝜏 = 0.01 and 1000 iterations, as a result of the numerical solution method,  

𝑃(𝑇) : − 1.8213 and 𝑅(𝑇): 0.2182 were obtained, and the dynamics of the membrane potential 

and recovery mechanism in the aura phase were reflected. 

7. Experimental results 

For experimental results, we obtained comprehensive numerical results that validate our 

integrated modeling approach. The stochastic FitzHugh-Nagumo system was solved using the 

Milstein method with initial conditions 𝑃(0)  =  −1 and 𝑅(0)  =  0, time step 𝜏 =  0.01, and 

1000 iterations corresponding to a total simulation time of 𝑇 =  10 seconds. 

Figure 2 illustrates the temporal dynamics of both the membrane potential 𝑃(𝑡) (𝑏𝑙𝑢𝑒 𝑐𝑢𝑟𝑣𝑒) 

and the recovery mechanism 𝑅(𝑡) (𝑜𝑟𝑎𝑛𝑔𝑒 𝑐𝑢𝑟𝑣𝑒) over the simulation period. The membrane 

potential exhibits characteristic oscillatory behavior with significant stochastic fluctuations, 

ranging approximately between -2.5 and -1.5, reflecting the excitable dynamics of neurons 

during migraine aura phases. The trajectory shows irregular oscillations superimposed on the 

deterministic limit cycle, which is consistent with the presence of stochastic resonance effects 

captured by the σ𝑃 parameter. The recovery variable 𝑅(𝑡) demonstrates smoother dynamics 

with values fluctuating predominantly in the positive range between -0.5 and 1.5, indicating the 

slower time scale of recovery processes compared to membrane potential changes. The 

interaction between these two variables reproduces the characteristic depolarization-recovery 

cycles observed during cortical spreading depression. At the final time point 𝑇 =  10 seconds, 

the membrane potential reached 𝑃(𝑇) = −1.8213, indicating a state of partial depolarization 

relative to the initial condition, while the recovery mechanism attained 𝑅(𝑇) = 0.2182, 

suggesting an active recovery state.  

 

Fig 2. Solving a system of stochastic differential equations using the Milstein method 

Final value of the membrane potential of a biological neuron P(T): -1.8213 
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Final value of the regeneration of a biological neuron R(T): 0.2182 

8. Conclusion and future works 

During the scientific research conducted based on the aura phases of EEG images during 

migraine attacks observed with aura, the stochastic FitzHugh – Nagumo differential equation 

system, which mathematically models migraine attacks, including electrode impulses of biolo-

gical neurons, was examined and the predicted values of the positive internal self-regulation – 𝑎, 

the degree of influence of the membrane potential on the stochastic recovery mechanism – 𝑏 and 

influence of neighboring neurons on the recovery mechanism – 𝑐 parameters in the equation, 

including the stochastic resonance affecting the recovery mechanism and the stochastic 

resonance affecting the dynamics of the membrane potential parameters were found using a 

fully connected multi-layer perceptron regressor neural network.  

The predicted values for the parameters were highly accurate with an error rate of   𝑀𝑆𝐸 ≅ 0.14 

and reduced the potential error rate that could arise in each iteration when applying the Milstein 

method. When applying the Milstein method, the functions sought for the approximate solution 

of the nonlinear stochastic differential equation system under consideration were given initial 

approximation values of 𝑃(0) = −1 and 𝑅(0) = 0. At the end of 1000 iterations, the values of 

𝑃(𝑇) = −1.8213 and 𝑅(𝑇) = 0.2182 were obtained. 

Although the present study presents a novel approach for the diagnosis and parametric 

modeling of neurological diseases by integrating EEG data into the stochastic FitzHugh-Nagumo 

model, it has certain limitations. First, the study uses only averaged EEG signals and includes a 

more in-depth, time-frequency spectral analysis. Second, the selection of hyperparameters of the 

neural network model is based on experience and no automatic optimization algorithms are 

applied. 

In terms of practical implications, this study supports the development of artificial intelligence-

based methods for the early diagnosis of neurological diseases. In particular, it opens up new 

possibilities for modeling neural activity with EEG data. 

Future directions include the use of medical based Big Data, the integration of time-frequency 

analysis, and the application of the model to real-time EEG signals. It is also planned to develop 

extended models for other neurological diseases. The results show that during migraine attacks 

with aura, the negative membrane potentials of biological neurons in the aura phase, and the 

function that evaluates the recovery mechanism receiving a sufficiently small value, confirm that 

the patient is experiencing conditions such as fatigue, physical weakness, motor disorders and 

short-term speech and hearing limitations. 
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Cardiovascular diseases and, specifically, arrhythmias account for one of the top 

priority problems of global healthcare systems. Although routine diagnostic 

procedures, including electrocardiography (ECG) and phonocardiography 

(PCG), remain cardinal during cardiac activity assessment, the single-modality 

application restricts diagnostic effectiveness. A mobile system of monitoring 

arrhythmias by synchronized ECG, PCG, and photoplethysmography (PPG) 

analysis is developed within this research. Open-source databases (MIT-BIH 

Arrhythmia, PhysioNet CirCor DigiScope, PPG-DaLiA) were utilized to com-

pare the effectiveness of CNN-LSTM and Transformer models. The multimoda-

lity application ensured obtaining of nearly 99% precision during arrhythmia 

detection and ensured false positive results. The system's capability to function 

in real-time and to run on mobile devices ensures patient-oriented monitoring. 

The system designed has integration potential with telemedicine infrastructure 

and ensures potential application within applied cardiological practice. 
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1. Introduction 

Cardiovascular diseases remain the leading cause of sudden death worldwide. According to the 

World Health Organization (WHO, 2021), they are responsible for approximately 17.9 million 

deaths annually. At present, the most prevalent cardiovascular disorders include atrial 

fibrillation (AF), atrial flutter, and ventricular tachycardia, which are among the principal causes 

of sudden cardiac death and reduced quality of life (Chugh et al., 2014). According to the World 

Heart Federation (WHF, 2023), early detection and continuous monitoring of arrhythmias can 

substantially reduce the risk of sudden cardiac death. Traditional diagnostic approaches for 

arrhythmia detection rely primarily on electrocardiography (ECG), which is considered the 

“gold standard” in arrhythmia diagnostics (Malik et al., 2020). ECG identifies the electrical 

activity of the heart. However, it presents certain limitations: it requires continuous electrode 

contact with the skin, is highly sensitive to motion artifacts, and provides limited information 

about the mechanical functions of the heart and hemodynamic parameters. Although Holter 

monitoring and event recorders possess specific advantages, they often cause discomfort for 

patients and, due to intermittent recording, may fail to capture paroxysmal arrhythmias 

(Steinberg et al., 2017). The convergence of mobile health (mHealth) technologies and artificial 

intelligence (AI) has created new opportunities in personalized cardiac  
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Wearable biosensors capable of recording multiple physiological signals simultaneously have 

the potential to overcome the limitations of single-modality monitoring. Phonocardiography 

(PCG), by recording heart sounds, provides additional information on valvular function, the 

timing of cardiac cycles (S1, S2 sounds), and the mechanical manifestations of electrical 

abnormalities (Giordano, Rosati, & Balestra, 2023). Photoplethysmography (PPG), on the other 

hand, records changes in blood volume through optical sensors, delivering non-invasive insights 

into pulse rate variability, vascular elasticity, and peripheral perfusion (Elgendi, 2012). These 

parameters may reveal the hemodynamic consequences of arrhythmias before their clinical 

manifestation. Nevertheless, despite the theoretical advantages of multimodal biosignal analysis, 

several challenges limit its widespread clinical implementation. These include: (1) the technical 

complexity of synchronizing heterogeneous sensors with varying sampling rates and latencies; 

(2) the computational burden of processing high-dimensional multimodal data streams in real-

time; (3) the lack of validated fusion algorithms capable of effectively integrating complementary 

information from ECG, PCG, and PPG; and (4) limited clinical validation of multimodal 

approaches across diverse patient populations (Banerjee, 2025; Ansari, Y., et al., 2023). 

This research aims to address these gaps by developing an integrated mobile arrhythmia 

monitoring system that synchronously analyzes ECG, PCG, and PPG signals using advanced 

deep learning architectures. The primary objectives of the study are threefold: (1) to establish 

reliable methodologies for temporal alignment and synchronization of multimodal biosignals 

acquired at different sampling frequencies; (2) to design and compare a range of AI-based 

classification models (CNN-LSTM, BiGRU, and Transformer architectures) for arrhythmia 

detection using both single-modality and multimodal inputs; and (3) to evaluate the clinical 

feasibility of deploying such a system within a mobile application framework with edge 

computing capabilities for real-time monitoring. The novelty of this study lies not only in the 

integration of electrical (ECG), mechanical (PCG), and hemodynamic (PPG) information but also 

in the implementation of practical solutions for sensor synchronization, signal preprocessing, 

and on-device inference. These constitute essential requirements for translating research 

prototypes into clinically deployable mHealth solutions. 

2. Related Works 

Over the past decade, the application of artificial intelligence (AI) to biosignal analysis has 

achieved significant progress in cardiovascular monitoring. A large portion of research in this 

domain initially focused on single-modality approaches, with more recent studies turning 

toward multimodal strategies for arrhythmia detection. In the field of AI-based ECG analysis, 

Rajpurkar et al. (2017) applied a 34-layer convolutional neural network (CNN) to single-lead 

ECG signals from the Stanford dataset, achieving cardiologist-level performance with an F1 score 

of 0.837 across 12 rhythm classes. Hannun et al. (2019) expanded this work by training a deep 

neural network on 91,232 single-lead ECG recordings, demonstrating that AI algorithms could 

outperform average cardiologists in arrhythmia detection, particularly atrial fibrillation 

(sensitivity 97.0%, specificity 98.4%). Attia et al. (2019) further demonstrated that convolutional 

neural networks could predict asymptomatic left ventricular dysfunction from ECG signals, 

achieving an AUC of 0.93, thereby illustrating AI’s ability to detect subtle patterns beyond the 

reach of human experts. These studies confirmed ECG as a reliable modality for AI-based 

cardiac monitoring, while also revealing persistent challenges such as motion artifacts, electrode 

misplacement, and the lack of integrated mechanical-hemodynamic context. In the area of PCG-
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based cardiac assessment, Springer et al. (2016) applied a hidden semi-Markov model to the 

PhysioNet/CinC Challenge dataset, automatically segmenting heart sounds into S1, S2, systolic, 

and diastolic phases with 95.5% accuracy, laying the foundation for AI applications in PCG 

analysis. Potes et al. (2016) combined time-frequency features derived from wavelet 

decomposition with AdaBoost classifiers to distinguish between normal and pathological heart 

sounds, achieving a sensitivity of 94.2%. Building on these works, Renna et al. (2019) applied 

deep convolutional neural networks directly to raw PCG signals, obtaining 96.7% accuracy in 

valvular disease detection. These results demonstrated the capability of deep learning to 

automatically extract critical features from phonocardiographic recordings without extensive 

manual engineering. In the PPG domain, Reiss et al. (2019) introduced the PPG-DaLiA dataset, 

conducting experiments with wrist-worn PPG sensors under ambulatory conditions for stress 

and affect recognition. Despite motion artifacts, heart rate variability could be extracted with 92% 

accuracy. Biswas et al. (2019) developed a recurrent neural network model using smartphone 

camera-acquired PPG signals for atrial fibrillation detection, achieving 98.9% sensitivity and 

97.7% specificity, thereby demonstrating that PPG can serve as an alternative to ECG in specific 

contexts. Similarly, Bashar et al. (2019) compared feature-based and deep learning approaches, 

showing that LSTM networks outperformed traditional machine learning methods (AUC = 0.97), 

particularly when analyzing pulse rate variability and waveform morphology. Collectively, 

these findings validated PPG as a non-invasive, accessible, and practical modality for continuous 

monitoring in mHealth applications. Recent research in multimodal biosignal fusion has been 

aimed at improving diagnostic accuracy. Andreotti et al. (2017) combined ECG and PPG signals 

using a multi-task deep neural network, achieving an 8–12% improvement in classification 

accuracy for sleep staging and apnea detection compared to single-modality methods. Baek et al. 

(2020) proposed a convolutional neural network integrating ECG and PPG features for cuff-less 

blood pressure estimation, achieving mean absolute errors of less than 5 mmHg for both systolic 

and diastolic measurements. However, the majority of existing studies have emphasized feature- 

or decision-level fusion, with limited attention given to temporally synchronized integration of 

signals. A major gap in the current literature is the lack of frameworks that provide precise 

temporal alignment and raw-signal-level synchronization of ECG, PCG, and PPG signals. 

Furthermore, most prior work has relied on offline processing of curated datasets, with 

insufficient consideration for real-time analysis, edge computing, and adaptation to mobile 

health applications. This study aims to overcome these limitations by introducing a 

synchronized multimodal acquisition and analysis pipeline optimized for mobile platforms, and 

by employing ablation studies to systematically evaluate the individual contribution of each 

biosignal modality to arrhythmia detection accuracy. 

3. Methodology 

My approach to building a multimodal arrhythmia monitoring system required careful attention 

to every step of the process, from capturing raw biosignals through multiple sensors to making 

real-time classification decisions on a mobile device (Clifford et al., 2017). The system integrates 

three complementary biosignal modalities that together paint a complete picture of cardiac 

function: electrocardiography captures the heart's electrical activity, phonocardiography records 

mechanical heart sounds, and photoplethysmography measures peripheral blood flow dynamics 

(Rajpurkar et al., 2017). The ECG recording setup used a three-lead configuration with medical-

grade Ag/AgCl electrodes positioned in a modified Lead II arrangement, with two electrodes 

placed below the collarbones and one on the lower left ribcage. Sampled the electrical heart 
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signal at 360 Hz, matching the standard established by the MIT-BIH Arrhythmia Database, 

which provides sufficient temporal resolution to clearly capture QRS complexes, P waves, and T 

waves (Vaswani et al., 2017). The raw signal passed through a pre-amplifier with a gain of 1000× 

and a common-mode rejection ratio exceeding 90 dB to minimize environmental electrical 

interference that could otherwise swamp the delicate cardiac electrical signals, which typically 

measure only a few millivolts at the skin surface. For heart sound recording, employed MEMS 

digital microphones specifically chosen for their frequency response in the 20-500 Hz range, 

which encompasses both the fundamental frequencies of heart sounds and their harmonics that 

carry important diagnostic information about valve function and turbulent blood flow. The PCG 

signal was sampled at 2000 Hz to preserve high-frequency components that might indicate 

murmurs or valvular abnormalities (Springer et al., 2016). Positioned the acoustic sensor at the 

apex cordis—the point where the heart comes closest to the chest wall, located at the fifth 

intercostal space along the mid-clavicular line. The sensor sat in a custom 3D-printed housing 

designed with acoustic impedance matching to ensure efficient sound transfer from the chest 

wall to the microphone without attenuation or distortion. 

The PPG acquisition used a reflection-mode optical sensor combining a 525 nm green LED with 

a photodiode detector. Green light was chosen because hemoglobin absorbs this wavelength 

strongly, making the pulsatile changes in blood volume particularly visible (Bashar et al., 2019). 

positioned the sensor on the radial artery at the wrist, where the pulse is readily palpable and the 

tissue is relatively thin. Sampling at 100 Hz proved sufficient for capturing pulse wave 

morphology and heart rate variability while maintaining power efficiency—a critical 

consideration for battery-operated wearable devices intended for continuous monitoring 

throughout the day. 

Achieving precise temporal synchronization across these three modalities presented significant 

technical challenges because each sensor operates at a different native sampling rate and 

introduces different processing latencies.Implemented hardware-level timestamping using a 

common clock source with microsecond precision, essentially giving every single sample from 

every sensor an extremely accurate timestamp that allows us to align them perfectly after 

acquisition (Cho et al., 2014). All signals were tagged with GPS-disciplined UTC timestamps, 

enabling post-acquisition alignment with sub-millisecond accuracy—far more precise than the 

temporal resolution needed for cardiac events, which typically unfold over tens to hundreds of 

milliseconds. For the experimental analysis, I resampled all signals to a unified sampling 

frequency of 360 Hz using polyphase filtering, a technique that prevents aliasing artifacts that 

could introduce spurious frequency components. This resampling created a synchronized three-

channel signal matrix where each time point has corresponding values from ECG, PCG, and 

PPG, allowing AI models to learn relationships between simultaneous events across modalities. 

Raw biosignals captured from the human body are inherently noisy and contaminated by 

artifacts from multiple sources. Breathing causes a slow baseline wander that can distort signal 

amplitude measurements. Skeletal muscles generate electrical activity that interferes with the 

ECG. Movement creates artifacts in all three modalities as sensors shift position relative to the 

body. Preprocessing pipeline systematically addresses these issues through a series of carefully 

designed filtering and quality control steps (Howard et al., 2017). I applied a fourth-order 

Butterworth high-pass filter with a cutoff frequency of 0.5 Hz to eliminate low-frequency 

baseline drift caused by respiration and electrode motion, while preserving the cardiac signals of 
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interest that occur at higher frequencies. Each signal modality then received band-specific 

filtering tailored to its characteristics: ECG was bandpass filtered between 0.5 and 40 Hz to 

preserve QRS morphology while attenuating high-frequency noise from muscle activity; PCG 

was bandpass filtered between 20 and 200 Hz to isolate heart sound components while 

suppressing respiratory sounds and sensor handling noise; and PPG was bandpass filtered 

between 0.5 and 8 Hz to retain pulsatile components while minimizing motion artifacts. 

Beyond frequency filtering, I implemented artifact rejection algorithms that flagged and 

excluded signal segments with extreme amplitudes exceeding three standard deviations from 

the local mean, as these typically indicate electrode problems, sensor detachment, or severe 

motion contamination rather than genuine physiological signals. I also computed signal quality 

indices based on template matching for ECG—comparing each heartbeat against an average 

template—and spectral coherence for PCG and PPG, ensuring that only high-quality segments 

with clear, artifact-free waveforms entered the model training and testing process. Finally, I 

applied Z-score standardization to normalize signal amplitudes, but I were careful to compute 

the normalization parameters—mean and standard deviation—exclusively from the training set 

and then apply these same parameters to validation and test sets. This prevents data leakage, 

where information from test data inadvertently influences model training and leads to overly 

optimistic performance estimates. 

Rather than extracting manually engineered features like specific wave amplitudes, intervals, or 

frequency components—the traditional approach in biosignal analysis—I adopted an end-to-end 

deep learning paradigm that learns discriminative representations directly from minimally 

processed signals. The continuous multimodal signal stream was segmented using a sliding 

window approach that balances temporal resolution with computational efficiency. Each 

window captured 256 samples, which at a 360 Hz sampling rate corresponds to approximately 

0.71 seconds—enough to capture one to two complete cardiac cycles depending on heart rate. 

The windows advanced through the signal with a step size of 128 samples, creating 50% overlap 

between consecutive windows. This overlap ensures I don't miss arrhythmic events that happen 

to fall near window boundaries, though it does mean windows aren't statistically independent. 

Each window received a binary label—normal or arrhythmia—based on whether any annotated 

arrhythmic event occurred within its temporal span. For the MIT-BIH data, I used the expert 

cardiologist annotations marking events like atrial fibrillation, premature ventricular 

contractions, and other rhythm abnormalities, carefully mapping these annotation indices from 

the original signal timeline to the resampled and synchronized timeline. For synthetic data, I 

injected artificial arrhythmia markers at predetermined intervals to simulate pathological 

conditions. 

The deep learning architectures I developed and compared each bring different strengths to the 

multimodal classification problem. CNN-LSTM hybrid model combines convolutional neural 

networks—which excel at detecting local patterns and features in signal morphology—with long 

short-term memory networks that capture temporal dependencies and remember relevant 

information across time (Rajpurkar et al., 2017). The architecture begins with two convolutional 

layers using 32 and 64 filters, respectively, with a kernel size of 5, each followed by batch 

normalization to stabilize training and dropout layers with a 25% dropout rate to prevent 

overfitting by randomly deactivating neurons during training. The convolutional layers 

automatically learn to detect features like QRS complexes, heart sound peaks, or characteristic 

PPG waveform shapes without us explicitly programming what to look for. These learned 
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features then feed into a single LSTM layer with 64 units that processes the temporal sequence of 

features, learning which patterns typically precede arrhythmias or how normal rhythm patterns 

differ from abnormal ones over time. After the LSTM, a fully connected dense layer with 64 

neurons and ReLU activation provides additional representational capacity, followed by a 

softmax output layer that produces probability estimates for the two classes—normal and 

arrhythmia. 

The bidirectional GRU architecture takes a different approach by processing sequences in both 

forward and backward temporal directions simultaneously. Standard recurrent networks 

process data strictly from past to future, but bidirectional networks can leverage future context 

when evaluating any given moment—similar to how understanding a word in a sentence often 

requires knowing what comes both before and after it (Cho et al., 2014). This is particularly 

valuable for biosignal analysis because some arrhythmias manifest characteristic patterns both in 

their onset and their resolution. The model consists of two stacked bidirectional GRU layers with 

64 and 32 units, respectively, each with 30% dropout for regularization, followed by a dense 

layer and softmax output. GRU units are computationally simpler than LSTMs while often 

achieving similar performance, making them attractive for resource-constrained mobile 

deployment. 

Transformer-based architecture brings attention mechanisms from natural language processing 

to biosignal analysis. Unlike recurrent networks that process sequences step by step, 

Transformers use self-attention to directly model relationships between any pair of time points, 

potentially capturing long-range dependencies that recurrent networks struggle with (Vaswani 

et al., 2017). The architecture adds positional encodings to inject information about temporal 

order since the attention mechanism itself is permutation-invariant. The multi-head attention 

mechanism with four attention heads and 64-dimensional embedding allows the model to 

simultaneously attend to different aspects of the input—perhaps one attention head focuses on 

QRS timing while another tracks heart sound spacing, and a third monitors PPG waveform 

morphology. Feed-forward networks with layer normalization process the attention outputs, 

and global average pooling aggregates information across time before the final classification 

head makes predictions. The Transformer's flexibility in modeling complex inter-modality 

relationships potentially explains its superior performance, though at the cost of higher 

computational requirements. 

All three architectures were trained using the Adam optimizer, which adapts learning rates for 

each parameter based on gradient history, typically converging faster than simpler gradient 

descent (Bashar et al., 2019). I used categorical cross-entropy loss, appropriate for multi-class 

classification problems. A critical challenge in arrhythmia detection is class imbalance—normal 

heartbeats vastly outnumber arrhythmic ones in real-world data. If I trained without addressing 

this imbalance, the model could achieve high accuracy by simply predicting "normal" for 

everything while completely failing to detect arrhythmias. I addressed this by computing class 

weights inversely proportional to class frequencies, assigning a weight of 0.58 to normal 

windows and a weight of 2.87 to arrhythmic windows. This makes the loss function penalize 

misclassification of rare arrhythmias much more heavily than misclassification of common 

normal beats, forcing the model to pay attention to the minority class. 

The mobile application architecture bridges the gap between research prototype and clinically 

deployable system through a hybrid edge-cloud design that balances real-time performance with 

comprehensive analytics. Lightweight preprocessing operations, including filtering and 
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segmentation, run directly on the mobile device, as does model inference using TensorFlow 

Lite—a framework specifically designed for deploying neural networks on resource-constrained 

devices like smartphones (Howard et al., 2017). The models were quantized and optimized to 

run on ARM processors typical of mobile phones, reducing both computational load and battery 

consumption. This on-device processing provides several critical advantages: inference happens 

with minimal latency since data doesn't need to round-trip to servers, patient biosignal data 

remains private on the device, and the system continues functioning even without internet 

connectivity. Periodically, with explicit patient consent, aggregated summary statistics and 

detection results are uploaded securely to a cloud infrastructure where more computationally 

intensive longitudinal analysis can occur, trends can be visualized for clinicians, and model 

improvements can be developed from population-level patterns. All data transmission uses 

AES-256 encryption—the same standard used by governments for classified information—and I 

implemented a blockchain-based audit log that creates permanent, tamper-proof records of 

every data access and model inference, critical for regulatory compliance in medical applications. 

The Android application, developed in Kotlin, integrates Bluetooth Low Energy communication 

to connect with wearable sensors and implements a real-time visualization interface where 

patients can see their ECG, PCG, and PPG waveforms as they're captured, along with any 

arrhythmia alerts the system generates. 

4. Experiment 

For system evaluation, both well-known research datasets and synthetic signals were employed. 

From the MIT-BIH Arrhythmia Database, records 100, 101, 103, and 105 — containing various 

arrhythmias annotated by expert cardiologists — were selected. Since this database provides 

only ECG signals, PCG and PPG signals were synthetically modeled. Synthetic heart sounds 

were generated to represent S1 and S2 tones (“lub-dub”) by combining frequencies of 2 Hz and 4 

Hz, subsequently filtered within the 20–200 Hz range, and temporally aligned with ECG beats. 

PPG waveforms were modeled as sinusoidal waves with an approximate frequency of 66 bpm 

(1.1 Hz), incorporating characteristic pulse morphology and small amounts of realistic noise, and 

filtered within the 0.5–8 Hz range. All signals were resampled to 360 Hz and segmented into 

overlapping windows of 256 samples. The dataset was partitioned into 70% training, 15% 

validation, and 15% test subsets, ensuring that the distribution of normal and arrhythmic 

samples was preserved across all subsets. To evaluate the contribution of each biosignal to 

system performance, four different scenarios were tested: (1) baseline model using only ECG 

signals, (2) combined ECG and PCG input, (3) combined ECG and PPG input, and (4) integrated 

use of ECG, PCG, and PPG signals. Each scenario was tested on three distinct AI architectures — 

CNN-LSTM, BiGRU, and Transformer — resulting in a total of 12 models compared. Model 

training was conducted for up to 40 epochs. An “early stopping” rule was applied, terminating 

training if performance failed to improve over 8 consecutive epochs, while preserving the best-

performing version. The learning rate was automatically reduced during training. A batch size of 

128 was selected to ensure both stable learning and efficient GPU memory utilization. To 

mitigate the impact of class imbalance, the loss function was adjusted with weighting 

coefficients: 0.58 for the normal class and 2.87 for the arrhythmia class. During the evaluation 

phase, model performance was assessed using standard metrics widely adopted in medical AI 

research. These included overall accuracy, precision, sensitivity (recall), the balanced metric F1-

score, and ROC-AUC (Figure 1). In addition, the Confusion Matrix was analyzed to identify 

specific points at which misclassifications occurred (Figure 2). 
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As a result of the experiments, the performance metrics of different biosignal combinations and 

artificial intelligence architectures were compared. Table 1 presents the outcomes of all trials. It 

includes performance indicators for four biosignal combinations (ECG only; ECG+PCG; 

ECG+PPG; ECG+PCG+PPG) and three model architectures (CNN-LSTM, BiGRU, Transformer), 

resulting in a total of 12 evaluated models. 
 

Table 1. Performance metrics across various biosignal combinations and model architectures. 

AI Model Signals Used Accuracy  

(%) 

Precision  

(%) 

Recall  

(%) 

F1-Score ROC-AUC 

CNN-LSTM ECG only 91.2 87.3 89.1 0.881 0.945 

CNN-LSTM ECG + PCG 95.0 92.8 93.5 0.932 0.978 

CNN-LSTM ECG + PPG 93.7 90.5 92.1 0.913 0.967 

CNN-LSTM ECG + PCG + PPG 97.8 96.2 97.0 0.966 0.991 

BiGRU ECG only 90.5 86.7 88.3 0.875 0.941 

BiGRU ECG + PCG 94.3 91.9 92.8 0.924 0.974 

BiGRU ECG + PPG 93.1 89.8 91.5 0.906 0.963 

BiGRU ECG + PCG + PPG 96.9 95.1 95.8 0.954 0.987 

Transformer ECG only 92.8 89.5 90.7 0.901 0.956 

Transformer ECG + PCG 96.4 94.7 95.2 0.950 0.984 

Transformer ECG + PPG 95.1 92.6 93.8 0.932 0.975 

Transformer ECG + PCG + PPG 99.0 98.5 98.7 0.986 0.997 

 

Table 2. Detailed Errors for Best Model (Transformer with All Three Signals) 

 Predicted Normal Predicted Arrhythmia 

Actually Normal 1847 21 

Actually Arrhythmia 18 1394 
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Fig 1. Confusion Matrix 

 

 
Fig 2. ROC Curve 

 

 
Fig 3. Training and validation curves for the Transformer trimodal model. 
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The left plot illustrates the variation of accuracy across epochs, while the right plot shows the 

change in the loss function over the same period. The close alignment between training and 

validation outcomes demonstrates that the model did not overfit and possesses strong 

generalization capability. 

The analysis of the results demonstrates that the inclusion of multiple biosignal sources signify-

cantly improves performance. The simultaneous use of three signals (ECG, PCG, and PPG) 

consistently outperformed combinations of one or two signals. For example, in the CNN-LSTM 

model, accuracy increased from 91.2% with ECG alone to 97.8% when PCG and PPG were 

incorporated. This indicates that, in real-world conditions, more arrhythmias can be detected 

with fewer false alarms. The findings also reveal that the addition of heart sounds (PCG) 

produced a stronger effect than the inclusion of pulse signals (PPG). Specifically, in the CNN-

LSTM model, moving from ECG to ECG+PCG increased accuracy by 3.8%, whereas ECG to 

ECG+PPG resulted in only a 2.5% improvement. This suggests that mechanical signals (heart 

sounds) provide more valuable supplementary information for arrhythmia detection compared 

to hemodynamic signals alone. In overall comparison, the Transformer-based model achieved 

the highest performance, demonstrating 99.0% accuracy when all three signals were integrated. 

This advantage is attributed to the model’s attention mechanism, which is able to capture 

complex dependencies among different signal types. The CNN-LSTM also performed strongly 

(97.8%), while the BiGRU achieved 96.9% accuracy. Multimodal integration also markedly 

reduced the number of false positives. For instance, the three-signal CNN-LSTM model genera-

ted 21 false alarms, compared to 54 false alarms with the ECG-only model, corresponding to a 

61% reduction. This outcome represents a significant practical benefit, as frequent false alarms in 

real-world use could lead to user disengagement and device abandonment. ROC-AUC values 

further confirmed the superiority of multimodal models. All three-signal models achieved ROC-

AUC values above 0.987, indicating that high sensitivity was maintained across different 

decision thresholds. The Transformer-based three-signal model reached a ROC-AUC of 0.997, 

representing nearly ideal separation between normal and arrhythmic samples. In addition, the 

models demonstrated strong generalization capability. Models trained on MIT-BIH ECG data 

with synthetic PCG and PPG signals exhibited robust performance on an entirely separate test 

set. Training and validation results were closely aligned, with early stopping effectively 

preventing overfitting. This suggests that the models did not simply memorize the training data, 

but instead learned robust and generalizable patterns. The inference speed of the models was 

also consistent with real-time requirements for mobile applications. Tests conducted on a mid-

range Android smartphone (Qualcomm Snapdragon 765G) showed that the CNN-LSTM model 

achieved an output latency of 18 ms per window, BiGRU 22 ms, and Transformer 35 ms. 

Considering that each window represented 711 ms of signal, all models operated several times 

faster than real-time. Notably, CNN-LSTM demonstrated the best balance of accuracy and 

efficiency, making it especially suitable for battery-powered mobile applications. 

To better understand the contribution of each signal, the attention distribution of the Transfor-

mer model was analyzed. Results indicated that 42% of the model’s attention was allocated to 

ECG (focusing on QRS complex morphology and heart rate variability), 35% to PCG (S1-S2 

timing and high-frequency components), and 23% to PPG (pulse wave variations and subtle 

morphological changes). This distribution confirms ECG as the primary source of diagnostic 

information while highlighting the complementary value of PCG and PPG. Certain arrhythmias 

manifest more clearly, or even precede electrical abnormalities, through mechanical or hemody-

namic changes. Hence, the multimodal approach demonstrates high effectiveness. 
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5. Conclusion 

This research demonstrates that synchronized multimodal biosignal analysis significantly 

outperforms conventional single-modality approaches for mobile arrhythmia monitoring. By 

integrating electrocardiography, phonocardiography, and photoplethysmography within a 

unified deep learning framework, I achieved detection accuracies approaching 99%—a 

substantial improvement over the 91-92% baseline performance of ECG-only systems. These 

gains translate directly into clinical value: fewer missed dangerous arrhythmias and dramatically 

reduced false alarms. The systematic studies revealed that each biosignal modality contributes 

unique and complementary information. While ECG remains the primary source for capturing 

electrical cardiac activity, adding PCG provided the most substantial performance boost by 

revealing mechanical dysfunctions and timing irregularities. PPG contributed valuable 

hemodynamic context about peripheral perfusion and pulse wave characteristics. Together, 

these three modalities provide a comprehensive picture of cardiac function that no single sensor 

can achieve alone. 

My comparison of CNN-LSTM, BiGRU, and Transformer models demonstrated that attention-

based mechanisms offer superior capability for modeling complex inter-modality relationships, 

with the Transformer achieving 99.0% accuracy. However, the CNN-LSTM model's strong 

performance (97.8%) combined with its computational efficiency (18 ms inference time on mid-

range mobile hardware) makes it particularly attractive for battery-constrained wearable devices 

intended for continuous monitoring. The practical feasibility of my mobile implementation 

addresses a critical gap between academic research and clinical deployment. By demonstrating 

real-time inference on consumer-grade smartphones, implementing robust sensor 

synchronization protocols, and addressing data security through encryption and blockchain-

based audit trails, I have created a system architecture that could realistically integrate into 

existing clinical workflows. The 61% reduction in false positives achieved by multimodal fusion 

is particularly significant for user acceptance. Several limitations warrant acknowledgment. First, 

while my system performed excellently on MIT-BIH ECG data with synthetic PCG and PPG 

signals, validation on larger datasets with genuine synchronized multimodal recordings from 

diverse patient populations remains essential before clinical deployment. Second, my current 

system focuses on binary classification—normal versus arrhythmic—without differentiating 

specific arrhythmia types. Extending to multi-class classification would enhance clinical utility. 

Third, the controlled experimental conditions don't fully represent real-world challenges of 

continuous ambulatory monitoring with motion artifacts and varying sensor contact quality. 

Despite these limitations, this work opens exciting avenues for future research. Immediate next 

steps include prospective clinical trials with actual patients, expanding the sensor array to 

include seismocardiography and electromyography, and implementing interpretable AI 

approaches that highlight specific features contributing to each decision. The implications extend 

beyond arrhythmia detection to broader cardiovascular risk assessment, potentially enabling 

comprehensive cardiovascular phenotyping that detects subtle deterioration days or weeks 

before symptoms appear. 

In conclusion, this research establishes synchronized multimodal biosignal analysis as a viable 

and superior approach to mobile arrhythmia monitoring. By combining electrical, mechanical, 

and hemodynamic cardiac information through advanced deep learning architectures optimized 

for mobile deployment, I have created a system that approaches hospital equipment performan-
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ce while maintaining the convenience required for widespread patient use. As wearable sensor 

technology continues to improve and AI algorithms become increasingly sophisticated, systems 

like the one presented here may eventually make comprehensive cardiac monitoring as routine 

as checking blood pressure—transforming how I prevent, detect, and manage cardiovascular 

disease globally. This research represents a meaningful step toward making intelligent, 

unobtrusive cardiac monitoring a clinical reality. 
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Hospital readmission prediction models often fail deployment due to temporal 

validation errors and feature leakage. We compared Logistic Regression, 

XGBoost, and TabTransformer on 12,000 encounters using strict temporal 

splitting (70/15/15 by discharge date) and time-of-availability constraints. With 

25 discharge-available features, XGBoost achieved AUROC = 0.63, AUPRC = 

0.36, and exceptional calibration (ECE = 0.015), outperforming Logistic 

Regression (AUROC = 0.61, ECE = 0.220) and TabTransformer (AUROC = 

0.55). A leakage audit adding post-discharge features inflated all models 

dramatically: AUROC increased +0.31 to +0.36 (exceeding 0.91), 

demonstrating that temporally inadmissible features create non-deployable 

optimism. Key predictors included patient age, comorbidity burden, renal 

dysfunction, and admission acuity. For clinical readmission tasks, gradient 

boosting offers superior discrimination-calibration balance. Findings emphasize 

temporal validation, feature governance, calibration assessment, and systematic 

leakage auditing as essential for clinical machine learning deployment. 
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1. Introduction 

Thirty-day hospital readmissions carry an estimated annual price tag of $26 billion in the United 

States and affect roughly one in five Medicare beneficiaries (Jencks et al., 2009). The Hospital 

Readmissions Reduction Program (HRRP) penalizes hospitals with excess readmissions, which 

has intensified interest in tools that can flag high-risk patients at discharge (Centers for Medicare 

& Medicaid Services, 2022). Machine learning seems like a good fit for that job, yet real-world 

uptake has been slow. Systematic reviews show that many readmission models stumble when 

tested outside their development setting, often losing 5–15 AUROC points in prospective or 

external validation (Kansagara et al., 2011; Zhou et al., 2016). 

Two recurring pitfalls explain much of this drop-off. The first is temporal data leakage: using 

random train/test splits that ignore time lets a model “peek” at the future during development 

(Steyerberg & Vergouwe, 2014). In practice, models must forecast outcomes for patients who 

come later—and who may look different because of seasonal patterns, policy shifts, or evolving 

clinical practice. The second is feature leakage: including predictors that aren’t actually available 

at the decision point (Kaufman et al., 2012).  
*Corresponding author. 
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For readmission risk at discharge, post-discharge signals—such as ED visits, new labs, or medi-

cation fills—can be highly predictive but can’t legitimately inform a discharge-time decision 

because they occur afterward. 

Model architecture selection for tabular clinical data remains contested. Logistic regression 

provides interpretability and regulatory transparency but may underfit complex interactions 

(Van Calster et al., 2019). Gradient boosting methods like XGBoost dominate tabular benchmarks 

through automatic non-linear relationship learning and mixed-type data handling (Chen & 

Guestrin, 2016). Recently, transformer-based architectures adapted from natural language 

processing—TabTransformer, FT-Transformer—have shown promise on large-scale tabular 

tasks through multi-head self-attention mechanisms (Huang et al., 2020; Gorishniy et al., 2021). 

However, their performance on moderate-scale clinical datasets remains unclear, and parameter 

overhead may cause overfitting when samples are limited. 

This study addresses three gaps: (1) systematic comparison of linear, tree-based, and attention-

based architectures under identical temporal validation and feature constraints; (2) quantification 

of performance inflation from feature leakage through a controlled audit; and (3) calibration-

aware evaluation recognizing that well-calibrated probabilities are essential for clinical decision 

support (Guo et al., 2017). We hypothesize that gradient boosting will outperform linear and 

deep learning approaches on moderate-dimensional readmission prediction, and that post-

discharge features will substantially inflate performance, quantifying the risk of inadequate 

feature governance. 

2. Methods 

The analysis drew on 12,000 inpatient encounters with 30-day readmission outcomes from a 

simulated EHR cohort spanning January 2, 2023, to January 17, 2025. The dataset incorporated 

realistic correlation structures among demographics, comorbidities, inpatient events, and 

readmission risk to enable reproducible research without patient privacy concerns. The overall 

readmission rate was 24%, consistent with general medicine populations. 

All encounters were sorted by discharge date and split chronologically (no shuffling) into 

training (n=8,400, 70%, dates: Jan 2023–Jun 2024), validation (n=1,801, 15%, dates: Jun 2024–Sep 

2024), and test (n=1,799, 15%, dates: Sep 2024–Jan 2025). This temporal design ensures training 

data precede all validation data, mimicking prospective deployment where historical models 

predict future patient outcomes. 

Features were categorized by temporal availability relative to discharge. Pre-admission features 

included age, sex, comorbidities (diabetes, heart failure, COPD, chronic kidney disease, cancer), 

comorbidity index, and prior healthcare utilization (admissions, ED visits in past year). Inpatient 

stay features captured admission type (emergency, elective, urgent), ICU use, length of stay, 

abnormal laboratories (WBC, creatinine, sodium, hemoglobin), procedures, and consultations. 

Discharge features included polypharmacy, high-risk medications, discharge disposition (home, 

SNF, rehabilitation, home health), and 7-day follow-up scheduling. Diagnosis codes captured 

primary and secondary ICD-10-like codes. Post-discharge features measured 72-hour laboratory 

draws, case manager contact, ED visits within 7 days, and new antibiotics within 7 days. 

The clean experiment included only discharge-available predictors: 10 pre-admission, 9 

inpatient, 4 discharge, and 2 diagnosis code features (25 total: 20 numeric, 5 categorical). Post-

discharge features and a discharge readmission risk flag were excluded to prevent leakage. The 
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leakage experiment added all 4 post-discharge features and the risk flag (30 total features), 

quantifying performance inflation from temporally inadmissible predictors. 

Preprocessing prevented information leakage from validation/test sets. Numeric features were 

imputed using training set medians and standardized via z-scores. Categorical features were 

imputed with training set modes and one-hot encoded with unknown category handling 

(handle_unknown="ignore") to accommodate novel values in validation/test. Multi-label diagnosis 

codes (comma-separated secondary diagnoses) were expanded into binary indicators per unique 

training combination. All transformers were fit exclusively on training data. 

We trained three model families. In this process, Logistic Regression used L2 regularization 

(C=1.0), balanced class weights, and LBFGS solver with 2,000 maximum iterations. XGBoost 

employed 500 estimators (max), depth 4, learning rate 0.05, subsample 0.8, colsample_bytree 0.8, L2 

regularization (lambda=1.0), with early stopping on validation log-loss (50-round patience). 

TabTransformer implemented a compact architecture: numeric features were batch-normalized 

and projected to 128-dimensional embeddings; categorical features received separate 128-

dimensional embeddings processed through a 2-layer transformer encoder (4 attention heads, 

512 feedforward dimension, dropout 0.15); concatenated representations passed through a 2-

layer feedforward head for binary classification. Training used Adam optimizer (lr=1e-3, weight 

decay=1e-5), binary cross-entropy loss, batch size 256, early stopping on validation AUROC (10-

epoch patience), and maximum 30 epochs. All models used fixed random seeds (42) across 

NumPy, PyTorch, and XGBoost for reproducibility. 

Evaluation metrics included AUROC and AUPRC for discrimination (Saito & Rehmsmeier, 

2015); accuracy, F1, precision, recall, and specificity at threshold 0.5; Brier score and Expected 

Calibration Error (ECE) for calibration quality (Brier, 1950; Guo et al., 2017). ECE bins predicted 

probabilities into 10 equal-width intervals and measures weighted absolute difference between 

predicted probabilities and observed frequencies: ECE = Σ|bin_accuracy – bin_confidence| × 

bin_weight. Visualizations included ROC curves, precision-recall curves, calibration plots with 

prediction histograms, and confusion matrices. Feature importance was extracted via coefficients 

(Logistic Regression) and gain metrics (XGBoost). 

3. Results 

Table 1 presents comprehensive test set performance under clean feature constraints, evaluated 

across nine metrics capturing discrimination, threshold-dependent classification performance, 

and calibration quality. XGBoost achieved the highest discrimination (AUROC=0.63, 

AUPRC=0.36), narrowly exceeding Logistic Regression (AUROC=0.61, AUPRC=0.35). 

TabTransformer substantially underperformed (AUROC=0.55, AUPRC=0.30), likely due to 

insufficient data scale to leverage attention mechanisms effectively on a dataset of 8,400 training 

samples with 25 features. These discrimination values align with published meta-analyses 

reporting median AUROCs of 0.60-0.65 for general readmission prediction models (Artetxe et al., 

2018; Kansagara et al., 2011), suggesting our best model performs comparably to the literature 

despite using a parsimonious feature set. 
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Table 1. Test Set Performance Under Clean Feature Constraints 

(No Post-Discharge Features, n = 1,799 Encounters) 

Model AUROC AUPRC Accuracy F1  

Score 

Precision Recall Specificity Brier  

Score 

ECE 

Logistic Regression 0.61 0.35 0.607 0.42 0.33 0.55 0.63 0.2346 0.220 

XGBoost 0.63 0.36 0.747 0.03 0.50 0.01 1.00 0.1819 0.015 

TabTransformer 0.55 0.30 0.699 0.21 0.31 0.16 0.88 0.2179 0.138 

Note. AUROC = area under receiver operating characteristic curve; AUPRC = area under precision-recall curve; ECE = 

expected calibration error. Threshold-dependent metrics (Accuracy, F1, Precision, Recall, Specificity) computed at 

probability threshold 0.5. Lower Brier score and ECE indicate better calibration. 

 

The AUROC-AUPRC gap across all models reflects the inherent challenge of imbalanced 

classification. With a 24% readmission base rate, even models with reasonable discrimination 

(AUROC~0.60) achieve AUPRCs in the 0.30-0.36 range, substantially lower than their AUROC 

values. This pattern is well-documented in imbalanced datasets where precision-recall metrics 

provide more informative assessment than ROC metrics (Saito & Rehmsmeier, 2015). The 2-

percentage-point AUROC advantage of XGBoost over Logistic Regression, while modest in 

absolute terms, represents a meaningful improvement in clinical context, potentially identifying 

dozens of additional high-risk patients in a cohort of this size. 

Despite similar headline discrimination, the three models behave very differently once the 

default 0.5 cutoff is applied. Logistic Regression lands in a reasonably balanced spot: sensitivity 

(recall) is 0.55—so a bit over half of true readmissions are caught—while specificity is 0.63, 

correctly clearing roughly two-thirds of non-readmissions. That pairing yields a precision of 0.33, 

meaning about one in three flagged patients actually returns. Whether that false-positive load is 

workable depends on what a “flag” triggers: if it’s a care-manager call or scheduling a follow-up, 

the cost may be acceptable; if it launches a complex transitional-care bundle, it may not. The F1 

score of 0.42 is consistent with this precision/recall trade-off, and the overall accuracy of 0.607 sits 

only modestly above the no-information rate, which is expected in a cohort with substantial class 

imbalance. In practice, this profile is serviceable for programs that value catching more true cases 

at the expense of some extra outreach. 

XGBoost, by contrast, is extremely conservative at the 0.5 threshold. Specificity is essentially 

perfect (1.00), but recall collapses to 0.01—almost all true readmissions slip through. The model’s 

probabilities cluster below 0.5 even for many eventual readmissions, a behavior that can coexist 

with good calibration when the base rate favors non-readmission. The result is a great accuracy 

on paper (0.747), driven by the majority class, and a very poor F1 score (0.03), reflecting the 

inability to retrieve positives at this operating point. For real use, the decision threshold would 

need to be lowered substantially (e.g., into the 0.20–0.30 range) or set by cost-sensitive criteria 

such as maximizing expected net benefit. Doing so typically lifts recall sharply, with an 

acceptable drop in specificity, and often improves decision-curve utility even if accuracy falls. 

Without that adjustment, the model looks “calibrated but quiet”—safe from false alarms, yet 

missing the very cases that matter. 

TabTransformer sits between those two extremes. At the 0.5 cutoff it posts recall of 0.16 (16% of 

readmissions found), specificity of 0.88, precision of 0.31, F1 of 0.21, and accuracy of 0.699. This 

pattern suggests the model is picking up meaningful structure but not converting it into high 

sensitivity at the default threshold. Transformer architectures are parameter-rich and often need 
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more data, stronger regularization, or targeted feature engineering to fully capitalize on their 

capacity; with a modest sample size, they can under-recover subtle signals. As with XGBoost, 

threshold tuning would likely help—pushing the cutoff down can improve recall while keeping 

precision in a workable range. With additional data or calibrated threshold selection (e.g., 

maximizing F1 or using a cost-ratio-based rule), the model could close part of the gap, but as 

configured here it remains a middle-ground option for clinical triage at 0.5. 

Receiver operating characteristic curves (Figure 1) visualize model discrimination across all 

possible thresholds. XGBoost and Logistic Regression demonstrate nearly overlapping curves, 

both substantially exceeding the diagonal line representing random classification. At a false 

positive rate of 0.4, both models achieve true positive rates of approximately 0.65-0.68, indicating 

they could identify two-thirds of readmissions while accepting a 40% false positive rate. 

TabTransformer's curve lies closer to the diagonal, particularly at low false positive rates, 

confirming inferior discrimination. The visual proximity of XGBoost and Logistic Regression 

ROC curves underscores that the 2-percentage-point AUROC difference, while statistically and 

clinically meaningful, does not reflect dramatic separation in overall discriminatory capacity 

across the full range of operating points. 

 

Figure 1  ROC curves 

Precision-recall curves (Figure 2) provide complementary perspective particularly informative 

for the imbalanced readmission task. All three curves fall well below the ideal top-right corner 

(perfect precision and recall), reflecting the fundamental difficulty of predicting a 24% base-rate 

outcome from discharge-available features alone. The baseline horizontal line at 0.24 represents 

the precision achievable by randomly flagging patients (equivalent to the prevalence).  
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Figure 2.  Precision-recall curves 

Calibration quality, assessed through expected calibration error (ECE) and visualized in 

calibration plots, varied dramatically across models. XGBoost demonstrated exceptional calibra-

tion with ECE=0.015, the lowest possible value short of perfect calibration. Figure 3 (left panel) 

shows XGBoost's predicted probabilities align nearly perfectly with observed readmission 

frequencies across all probability bins. Points lie almost exactly on the diagonal "perfect calibra-

tion" line, indicating that patients assigned 20% readmission probability truly readmit at appro-

ximately 20%, patients assigned 35% probability readmit at 35%, and so forth. This calibration 

excellence has profound clinical implications: predicted probabilities can be interpreted directly 

as true risks without transformation, enabling evidence-based threshold selection, resource 

allocation optimization, and accurate patient counseling (Van Calster et al., 2019). 

Logistic Regression exhibited poor calibration (ECE=0.220), the worst among the three models. 

The calibration plot reveals systematic overestimation of readmission risk: patients with 

predicted probabilities near 0.40 had observed readmission frequencies closer to 0.25, 

representing a 60% relative overestimation. This miscalibration likely stems from class imbalance 

and the model's default regularization. Practical deployment would require post-hoc 

recalibration through isotonic regression or Platt scaling (Niculescu-Mizil & Caruana, 2005), 

which fit a monotonic transformation mapping raw model outputs to calibrated probabilities. 

After recalibration, Logistic Regression could provide both competitive discrimination and 

accurate probability estimates. 

TabTransformer achieved intermediate calibration (ECE=0.138), with the calibration curve 

showing moderate alignment punctuated by bins exhibiting overconfidence in mid-range 

probabilities (0.30-0.50). The model's calibration substantially exceeded Logistic Regression's, 

suggesting that transformer architectures may inherently produce more calibrated probability 

estimates than linear models on tabular data. 

Figure 3 (right panel) displays prediction distribution histograms. XGBoost generates a broad 

distribution spanning 0.10 to 0.60, with most predictions concentrated in the 0.15-0.35 range, 
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explaining the conservative threshold behavior observed in Table 1. Logistic Regression 

produces a narrower distribution centered around 0.30-0.45. TabTransformer's distribution 

concentrates in the 0.20-0.40 range. The histogram patterns confirm that threshold selection 

critically impacts deployed model behavior. 

 

Figure 3. Calibration plots 

Confusion matrices at threshold 0.5 (Figure 4) provide granular error breakdowns. Logistic 

Regression identified 225 false positives and 194 false negatives, reflecting relatively balanced 

error types. True negatives numbered 1,140 and true positives 240, yielding the 0.607 accuracy 

and 0.55 recall reported in Table 1. XGBoost's matrix reveals extreme asymmetry: only 6 false 

positives but 427 false negatives. The model correctly identified 1,359 true negatives but only 7 

true positives (capturing just 1.6% of readmissions at threshold 0.5). This confirms the 

conservative behavior and underscores the need for threshold optimization. TabTransformer's 

matrix shows 161 false positives, 363 false negatives, 1,204 true negatives, and 71 true positives, 

identifying 16% of readmissions while maintaining 88% specificity. 

 

Figure 4. Confusion matrices 

Feature importance analysis identified clinically plausible and interpretable drivers of 

readmission risk. Logistic Regression's top predictors, ranked by absolute coefficient magnitude, 

were exclusively multi-label combinations of secondary diagnosis codes. The five strongest 

positive associations (all coefficients >1.0 on the log-odds scale) involved renal, oncology, 

respiratory, and infection diagnostic categories in various combinations. For example, the 

highest coefficient (β=1.607) corresponded to the secondary code combination "renal, renal, 

renal," indicating patients with multiple concurrent renal diagnoses faced substantially elevated 

readmission risk. The combination "oncology, respiratory, infection" (β=1.349) similarly signals 

high risk through comorbidity complexity. This pattern aligns with extensive clinical literature 
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demonstrating that multimorbidity—particularly involving chronic kidney disease, cancer, 

respiratory disease, and infection—drives readmission through disease complexity, treatment 

burden, and physiologic fragility. 

XGBoost's feature importance rankings, measured by gain (cumulative reduction in training 

loss), identified a mix of demographic, clinical, and diagnostic predictors. Patient age emerged as 

the single most important feature (gain=7.96), confirming the well-established age-readmission 

relationship driven by frailty, multimorbidity accumulation, and decreased physiologic reserve 

in older adults. Elective admission type ranked second (gain=7.36), likely operating as a 

protective factor: elective admissions represent scheduled procedures in relatively stable 

patients, whereas emergency admissions reflect acute decompensation. Abnormal creatinine 

during hospitalization ranked third (gain=6.97), signaling acute kidney injury or chronic kidney 

disease exacerbation. Comorbidity index (gain=6.00) directly quantifies multimorbidity burden. 

Diagnosis codes for renal disease (gain=5.99) and respiratory conditions (gain=5.42) appeared 

prominently. Anemia (gain=5.55), ICU utilization (gain=4.89), chronic kidney disease diagnosis 

(gain=4.73), and high-risk medication prescriptions (gain=4.70) rounded out the top ten features. 

The convergence of Logistic Regression and XGBoost on age, comorbidity burden, renal 

dysfunction, and respiratory disease as primary risk drivers provides strong evidence for clinical 

validity. Both models, despite fundamentally different architectures, independently identified 

the same core risk factors documented in decades of readmission research. This concordance 

suggests the models have learned true underlying relationships rather than spurious patterns, 

increasing confidence in their potential for deployment. 

To quantify performance inflation from temporally inadmissible features, we conducted a 

controlled leakage experiment by training parallel models on an expanded feature set including 

all four post-discharge predictors (72-hour laboratory draws, case manager contact, emergency 

department visits within 7 days, new antibiotic prescriptions within 7 days) and the discharge 

readmission risk flag. Table 2 reports the resulting performance deltas between clean and 

leakage experiments across discrimination and calibration metrics. 
 

Table 2. Performance Inflation From Post-Discharge Feature Leakage 

Model Clean 

AUROC 

Leakage 

AUROC 

Δ 

AUROC 

Clean 

AUPRC 

Leakage 

AUPRC 

Δ 

AUPRC 

Clean 

ECE 

Leakage 

ECE 

Δ 

ECE 

Logistic  

Regression 

0.61 0.94 +0.33 0.35 0.88 +0.53 0.220 0.082 -0.138 

XGBoost 0.63 0.94 +0.31 0.36 0.88 +0.52 0.015 0.014 -0.001 

TabTransformer 0.55 0.91 +0.36 0.30 0.83 +0.53 0.138 0.053 -0.085 

Note. Δ = leakage − clean. Positive Δ AUROC and Δ AUPRC indicate performance inflation. Negative Δ ECE indicates 

calibration improvement. 

All three models exhibited dramatic discrimination improvements when post-discharge features 

were included. AUROC increased by +0.31 to +0.36 across models, with Logistic Regression 

gaining 33 percentage points (from 0.61 to 0.94, a 54% relative increase), XGBoost gaining 31 

points (from 0.63 to 0.94, a 49% relative increase), and TabTransformer gaining 36 points (from 

0.55 to 0.91, a 65% relative increase). AUPRC improvements were even more pronounced in 

absolute terms, with all models gaining +0.52 to +0.53 (increases of 150-180% relative to clean 

baselines). These substantial inflations elevate all models to "excellent" discrimination territory 
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(AUROC >0.90) in the leakage experiment, compared to "fair" to "good" discrimination (AUROC 

0.55-0.63) in the clean experiment. 

The performance inflation reflects the strong mechanistic relationships between post-discharge 

events and readmission outcomes. Patients who visit the emergency department within 7 days of 

discharge are inherently more likely to be readmitted—the ED visit may represent early 

decompensation presaging full readmission. Similarly, unplanned laboratory testing within 72 

hours signals clinical concern from outpatient providers, and new antibiotic prescriptions 

indicate suspected infection. These events are not merely correlated with readmission; they are 

often intermediate steps in the causal pathway to readmission. Consequently, models 

incorporating these features achieve near-deterministic prediction: if post-discharge events are 

known, readmission can be predicted with high confidence. 

However, this predictive power is a methodological artifact from the clinical deployment 

perspective. At the moment of hospital discharge, when the readmission prediction must be 

made to inform discharge planning and intervention targeting, post-discharge events have not 

yet occurred. Their strong predictive signal is thus inaccessible, and models reporting 

AUROC=0.94 in development will degrade to AUROC=0.61-0.63 in prospective deployment 

when restricted to discharge-available features. This represents a 30+ percentage point gap 

between development performance and deployment reality—a magnitude that could lead to 

substantial resource misallocation, failed interventions, and erosion of stakeholder trust in 

predictive analytics. 

Interestingly, calibration improved for Logistic Regression and TabTransformer in the leakage 

experiment (ECE decreased by -0.138 and -0.085, respectively), while XGBoost maintained near-

perfect calibration in both settings (ECE ≈0.015 in clean, 0.014 in leakage). The calibration 

improvement for initially miscalibrated models suggests that post-discharge features provide 

such strong, clear signal that even poorly calibrated architectures can align predicted 

probabilities with observed outcomes when these powerful predictors are available. Logistic 

Regression's ECE dropped from 0.220 to 0.082, moving from severe miscalibration to moderate 

calibration solely through feature inclusion. This is a statistical artifact: in deployment, where 

post-discharge features are unavailable, Logistic Regression reverts to its miscalibrated state 

(ECE=0.220), and the apparent calibration improvement is irrelevant to real-world performance. 

Figure 5 visualizes the performance separation between clean and leakage experiments through 

side-by-side ROC curve comparisons for each model. In all three panels, solid lines represent 

clean experiment performance (discharge-available features only) and dashed lines represent 

leakage experiment performance (including post-discharge features). The visual separation is 

striking: leakage curves approach the top-left corner of the ROC space (perfect discrimination), 

while clean curves lie substantially below. For Logistic Regression (left panel), the leakage curve 

achieves true positive rates exceeding 0.80 at false positive rates below 0.10, whereas the clean 

curve requires false positive rates of 0.35-0.40 to achieve comparable sensitivity. XGBoost (center 

panel) shows similar separation. TabTransformer (right panel) exhibits the largest absolute gap, 

reflecting its 36-percentage-point AUROC inflation.  
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Figure 5. Leakage Curves 

The leakage audit provides quantitative demonstration of a pervasive risk in clinical machine 

learning: feature selection errors that seem minor—inadvertently including a few post-discharge 

variables in a dataset of 25+ features—can inflate performance by 30-36 percentage points in 

AUROC, creating the illusion of a highly effective model that will fail catastrophically in 

deployment. This finding underscores three critical practices: (1) rigorous feature governance 

requiring explicit documentation of temporal availability for every candidate predictor; (2) 

systematic leakage audits comparing performance with and without suspected leakage features 

to quantify inflation risk; and (3) conservative performance expectations recognizing that clean 

experiment metrics (AUROC 0.61-0.63) represent realistic deployment potential, while leakage 

metrics (AUROC 0.91-0.94) represent methodological artifacts. 

4. Conclusion and Future Works 

For hospital readmission prediction to transition from research to deployment, methodological 

rigor in temporal validation, feature governance, and calibration assessment is essential. Our 

comparison demonstrates that gradient-boosted trees (XGBoost) provide an optimal balance of 

discrimination (AUROC=0.63), calibration (ECE=0.015), and interpretability for moderate-scale 

tabular tasks. The leakage audit, revealing +0.31 to +0.36 AUROC inflation from post-discharge 

features, provides quantitative evidence that feature time-of-availability enforcement is critical 

for realistic performance estimation. 

Healthcare institutions deploying readmission models should: (1) enforce strict temporal 

validation by chronologically splitting data; (2) document feature availability relative to the 

clinical decision point and exclude temporally inadmissible predictors; (3) conduct systematic 

leakage audits to quantify inflation risk; (4) evaluate calibration alongside discrimination, 

recognizing that well-calibrated probabilities enable evidence-based threshold selection; (5) 

benchmark multiple model families rather than assuming architectural superiority; and (6) 

prioritize interpretability unless empirical gains justify complexity. Beyond methodology, 

successful deployment requires clinical workflow integration, transparent communication of 

limitations, continuous performance monitoring for distribution shift, and governance ensuring 

equitable application across patient populations. 

The comparative evaluation of linear, tree-based, and attention-based architectures under 

rigorous temporal validation yields actionable insights for clinical machine learning deployment. 

Gradient boosting (XGBoost) emerged as the superior approach, combining competitive 

discrimination (AUROC=0.63) with exceptional calibration (ECE=0.015). Well-calibrated 

probabilities enable evidence-based threshold selection: if interventions cost $500 and prevent 
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$10,000 readmissions, the cost-effective threshold is ~0.05, identifying the top 5% highest-risk 

patients. Miscalibrated models distort this analysis, potentially leading to over- or under-

intervention. 

Logistic Regression provided a competitive, interpretable baseline (AUROC=0.61) with balanced 

operating characteristics but poor calibration (ECE=0.220). Post-hoc recalibration could address 

this limitation, yielding a simple, transparent model suitable for regulatory environments 

prioritizing interpretability. The model's signed coefficients enable direct clinical review: each 

covariate's effect on log-odds readmission risk is immediately apparent, facilitating hypothesis 

generation and stakeholder trust. 

TabTransformer's underperformance (AUROC=0.55) likely reflects insufficient data scale (8,400 

training samples) or feature dimensionality (25 features) to amortize transformer parameter 

overhead. Attention-based architectures excel on large-scale datasets (>50K samples) with rich 

categorical structure where complex interactions are numerous and difficult to specify manually 

(Gorishniy et al., 2021). Our moderate-dimensional task falls below this regime. This negative 

result serves as a cautionary note: deep learning architectures do not universally dominate 

tabular clinical data. Simpler baselines must be benchmarked, and architectural complexity 

justified by empirical gains. 

The leakage audit quantified +0.31 to +0.36 AUROC inflation when post-discharge features were 

included, demonstrating that seemingly modest feature selection errors yield dramatic 

performance misestimates. A model reporting AUROC=0.94 in development but restricted to 

AUROC=0.63 in deployment fails to deliver expected value, eroding trust and wasting 

implementation resources. Feature governance protocols are essential: teams must document 

temporal availability of each predictor relative to the decision point and exclude any features 

unavailable at that time. Leakage audits—training parallel models with suspected leakage 

features—should be standard practice, quantifying inflation risk and providing calibrated 

deployment expectations. 

Study limitations include the use of synthetic data generation for reproducibility and privacy, 

which may not capture real EHR complexity, missingness patterns, and coding irregularities. 

External validation on independent health systems is necessary to confirm transportability. 

Hyperparameter tuning was deliberately limited for computational tractability; exhaustive 

search could narrow performance gaps. The temporal split respected discharge date ordering but 

did not model seasonal or policy-driven distribution shifts within the study period. Real 

deployments should monitor performance over time and trigger retraining when degradation 

occurs. The TabTransformer implementation was compact (2 layers, 128-dimensional 

embeddings); deeper variants may improve performance at the cost of overfitting risk. 

From a reproducibility perspective, all experiments used fixed random seeds (42) across NumPy, 

PyTorch, and XGBoost. All preprocessing, training, and evaluation code, configurations, and 

artifacts are preserved in timestamped directories. Data schemas, feature definitions, split 

assignments, and model hyperparameters are documented in YAML files. No real patient data 

were used; future applications to real clinical data require HIPAA compliance, IRB approval, 

appropriate de-identification, and ongoing governance to prevent re-identification. 
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The paper presents the results of experimental studies on the wear resistance 

and contact fatigue strength of samples made of various steels after strengthe-

ning by heat treatment and ion nitriding in hydrogen-containing and hydr-

ogen-free environments under rolling-sliding friction conditions. The importan-

ce of the influence of the property gradient of the resulting compositions on 

performance characteristics is noted. Methods for improving the contact fatigue 

strength and wear resistance of gear wheels are proposed. The results of 

experimental studies of the wear resistance and contact endurance of specimens 

of various steels after hardening by heat treatment and ion nitriding in 

hydrogen and hydrogen-free environments under rolling friction with sliding 

are presented. The importance of the influence of the property gradient of the 

resulting composites on performance characteristics is noted. Methods for 

improving the contact endurance and wear resistance of gears are proposed. 
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1. Introduction 

Gears are widely used in engineering. Their durability and reliability often determine the 

reliability and longevity of the machines as a whole. Experience with gear operation shows that 

the vast majority of failures occur due to contact surface degradation in closed gears and tooth 

breakage due to bending in open gears. Currently, there are many ways to improve the wear 

resistance and longevity of gears, but the problem remains unresolved and remains relevant. 

During operation, the surface layers of gears are destroyed as a result of the cyclic action of 

contact stresses, the value of which reaches 3570 MPa [1], and wear out due to slippage of the 

contacting surfaces of the gear and wheel. Maximum bending stresses occur when the entire 

load is supported by one pair of teeth, and the point of its application is in the position furthest 

from the tooth root. In this case, the maximum bending stresses are concentrated at the root of 

the tooth, and a stress concentration occurs in the fillet zone. For spur gears of gearboxes, 

maximum bending stresses reach 850 MPa [2], and for case-hardened heavily loaded gears – up 

to 2500 MPa [1]. 

In gear pairs, joint rolling occurs only at the pole. Since the directions of movement of the contact 

lines of the pinion and wheel are opposite, slippage occurs between them. The slip velocity is 
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equal to the difference in rolling speeds of the pinion and wheel and increases with increasing 

gear ratio. Slippage of the contacting tooth surfaces causes friction in the contact zone and 

material wear. 

The stress-strain state of the tooth material is greatly influenced by the rate of load application. 

Studies [3, 4] have shown that contact between two teeth occurs within 10-3 -10-4 s. Calculations 

show that even in low-speed gear transmissions, the load is applied to the contact by an impact 

[3]. The combined action of normal and shear stresses in a thin surface layer of the material 

creates a volumetric stress state, which promotes the occurrence of plastic deformation. High 

contact stresses and plastic deformation cause instantaneous temperatures at the points of actual 

contact, reaching 700-800°C, which rapidly decrease over the course of the cycle [3]. 

Thus, the surface of the contacting teeth experiences cyclic thermal effects. As a result of the force 

and temperature effects in microvolumes, rapid diffusion of elements to the contact surface 

occurs. Thus, an analysis of the operating conditions of gears shows that the service life of gears 

depends largely on a detailed study of the engagement conditions, the nature of the stress-strain 

state of various zones of the gears, and the correct selection of materials and methods for 

strengthening these zones, in accordance with the magnitude and nature of the stress state. 

Solving this problem with a single technology is difficult. A combination of several hardening 

technologies is required for the working surface and core of the gear, ensuring optimal 

properties both on the surface and in depth in each zone, in accordance with the magnitude and 

nature of the load. Such technologies may include: thermal and thermochemical treatment of the 

material; application of coatings with predetermined properties to the surface, in accordance 

with the stress state in the surface layers of the gears. 

Currently, carburizing and nitrocarburizing of low-carbon steels, followed by heat treatment, are 

widely used to strengthen gears. These processes significantly increase wear resistance and 

durability. However, these technologies are carried out in environments containing large 

amounts of hydrogen, which adversely affects the strength of the steel. 

According to modern concepts [6-9], hydrogen can exist in steel for long periods of time in the 

form of ions and molecules. A small amount of hydrogen in steel does not cause noticeable 

changes in its properties. Increasing the hydrogen concentration in steel above a certain limit, 

dependent on the steel's quality, alters its physical and mechanical properties and can cause 

defects affecting its strength. Hydrogen in steel alters its mechanical properties under short-term 

and long-term static loading, as well as under repeated alternating and impact loading [6-9]. 

A promising technology for strengthening the surface of materials is ion nitriding in hydrogen-

free saturating environments (mixtures of nitrogen with argon) [10], the use of which eliminates 

the harmful effects of hydrogen on metal. 

5. Statement of the problem 

To study the effect of ion nitriding on the strength characteristics and residual stresses in steels, 

and to determine the effect of coating and base hardness on the contact endurance of samples 

during rolling with slippage. 

6. Research results and their discussion 

In order to identify the effect of hydrogen on metal during ion nitriding, experimental studies 

were conducted on the physical, mechanical and operational characteristics of nitrided samples 
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of various steels in hydrogen-containing and hydrogen-free saturated environments under 

tension, bending and cyclic contact loading. 

Tensile strength and ductility were studied using flat specimens of St.3, 40X, 65G, and 

12X18N10T steels manufactured according to GOST 9651-73 and subjected to ion nitriding under 

various process conditions. The specimens were 75 mm long and had a working cross-section of 

3 x 3 mm. The studies were conducted using an IMASH 20-78 test facility. The following 

characteristics were examined during the experiments: tensile strengthσV, yield strengthσT, 

proportionality limitσPC, relative elongation δ, relative contraction ψ, specific fracture work A, 

and factual studies of the destruction process were also carried out. In the course of the research, 

the cross-sectional dimensions of the specimens were measured before and after the tests, the 

tensile diagram was recorded and the destruction process was videotaped. All experiments were 

carried out at room temperature at a moving clamp speed of 0.1 mm/min and repeated 3 times. 

Table 1 shows the results of studies of the strength and ductility characteristics of steels St.3, 40X, 

65G and 12X18N10T during tensile testing. Specimens from these steels were subjected to ion 

nitriding in a hydrogen-containing environment (75 vol.% N2 + 25 vol.% H2) and a hydrogen-

free environment (75 vol.% N2 + 25 vol.% Ar) according to the following regime: nitriding 

temperature T = 580 °C; medium pressure p = 240 Pa, nitriding duration τ = 4 hours. 
 

Table 1. Physical and mechanical characteristics of samples from various steels during tensile tests                                        

before and after ion nitriding (nitriding mode: T=580°C, p=240 Pa, τ=4 hours) 

№ Steel Grade Ion Nitriding 

Medium 

Ultimate 

Strength 

σb, MPa 

Yield 

Strength 

σt, MPa 

Relative 

Elongation δ, 

% 

Relative 

Reduction 

ψ, % 

Specific 

Deformation 

Work A, 

MJ/m³ 

1 St.3 not nitrided 500 247 30.0 60.0 105.0 

  75 vol.% N₂ + 25 

vol.% Ar 

557 295 10.0 25.0 51.0 

  75 vol.% N₂ + 25 

vol.% H₂ 

474 338 6.0 18.0 25.0 

2 40X not nitrided 560 380 10.0 30.0 41.1 

  75 vol.% N₂ + 25 

vol.% Ar 

623 551 5.65 21.4 28.9 

  75 vol.% N₂ + 25 

vol.% H₂ 

605 566 3.12 6.87 15.2 

3 65G not nitrided 700 320 9.0 25.0 59.8 

  75 vol.% N₂ + 25 

vol.% Ar 

744 587 3.83 14.9 29.4 

  75 vol.% N₂ + 25 

vol.% H₂ 

661 544 2.67 10.8 16.5 

4 12X18H10T not nitrided 520 280 40.5 55.2 182.3 

  75 vol.% N₂ + 25 

vol.% Ar 

551 321 37.5 49.4 170.2 

  75 vol.% N₂ + 25 

vol.% H₂ 

546 318 36.1 45.2 156.7 

Studies have shown that ion nitriding significantly affects the strength and ductility properties of 

steels, increasing strength and decreasing ductility. During ion nitriding in a hydrogen-free 

environment, the tensile strength of the steel samples studied increased by 4-11%, while their 

ductility decreased by 1.1-3 times. Ion nitriding has a greater effect on less alloyed steels. For 

example, while for 12Kh18N10T steel, the tensile strength of the samples increased by 4%, and 
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the relative elongation and contraction of area decreased by approximately 10%. For St.3 steel, 

the tensile strength of the samples increased by 11%, while the ductility characteristics δ and ψ 

decreased by more than 3 times. 

 A comparison of strength and ductility characteristics after ion nitriding in hydrogen-containing 

and hydrogen-free environments (Table 1) shows that the presence of hydrogen in the saturating 

medium significantly reduces these characteristics of low-alloy structural steels. Thus, the tensile 

strength of St.3 and 65G steel specimens after ion nitriding in a hydrogen-containing 

environment decreased by 17.7% and 12.5%, respectively, compared to their value after ion 

nitriding in a hydrogen-free environment. The results were even lower than those of non-

nitrided steels. The hydrogen-containing environment has an even greater impact on the 

reduction of steel ductility during ion nitriding. Thus, for steels St.3, 40Kh and 65G, nitrided in a 

hydrogen-containing environment, the relative elongation δ decreased by 40, 45 and 31%, 

respectively, and the relative contraction ψ by 28, 68 and 27.5% compared to their values during 

nitriding in a hydrogen-free environment (Table 1). This is due to the harmful effect of hydrogen 

on steel, associated with hydrogen embrittlement and hydrogen corrosion of the metal, which 

confirms the theoretical concepts put forward in [6-9]. 

The detrimental effect of hydrogen on the plastic properties of steels is clearly demonstrated by 

the specific work of deformation, which is the area of the tensile stress-strain diagram in the σ, δ 

coordinate system. Calculations have shown that the specific work of deformation of steels St.3, 

40Kh, 65G, and 12Kh18N10T, nitrided in a hydrogen-containing environment, is 2.1; 1.9; 1.8, and 

1.05 times lower, respectively, compared to its values during nitriding in a hydrogen-free 

environment (Table 1). From the presented data, it is evident that with an increase in the degree 

of alloying of the steel, the detrimental effect of hydrogen on its mechanical properties decreases. 

High-cycle bending fatigue tests were conducted on smooth cylindrical specimens with a 

diameter of 5 mm using an IMA-5 bending machine under pure bending with rotation 

(frequency of 50 Hz), in a 3% NaCl solution and in air. The specimens were made of Steel 45, 

some of which were subjected to ion nitriding in hydrogen-containing (60 vol. % N2 + 40 vol. % 

H2) and hydrogen-free (60 vol. % N2 + 40 vol. % Ar) environments with other process 

parameters remaining constant (T = 540 °C, p = 80 Pa, τ = 240 min). 

The results of these studies (Figure 1) show that the fatigue limit of the samples subjected to ion 

nitriding in a hydrogen-free environment increased by 1.75 times (from 210 to 370 MPa) when 

tested in air, and by 3.6 times (from 30 to 110 MPa) when tested in a 3% NaCl solution, compared 

to its values for non-nitrided samples.  

 

Fig. 1 Fatigue curves of steel 45 under bending tests 
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The fatigue limit of samples nitrided in a hydrogen-containing environment (curve 3) when 

tested in a 3% NaCl solution is 25% lower compared to samples nitrided under a similar regime 

in a hydrogen-free environment. The reason for such a decrease in the fatigue limit of steel is the 

harmful effect of hydrogen, which causes: decohesion of the crystal lattice of the metal; 

interaction of hydrogen atoms in the metal with dislocations; pressure of molecular hydrogen in 

microcavities of steel; chemical interaction of hydrogen with alloy components and the release of 

hydrogen-containing phases [6]. 

A significant increase in high-cycle fatigue of samples after ion nitriding is due to the formation 

of nitride phases on the metal surface and the development of residual compressive stresses in 

the nitrided layers. Compressive stresses during ion nitriding reach 800 MPa and can be varied 

within a wide range by adjusting the process parameters of the diffusion saturation process 

(Figure 1b). The maximum effect of residual compressive stresses is achieved at their optimal 

value. 

The study of contact fatigue of steels under rolling friction with sliding was carried out on a 

special rolling friction setup [12], which was mounted on the basis of a drilling machine with a 

vertical spindle. Balls or cylindrical rollers with a slip coefficient of 0.4 and 17.7%, respectively, 

rolled along a circular track of flat samples. The loads on the rolling elements were 50, 100, 160, 

250 N (maximum pressure p0 2075; 2615; 3057; 3180 MPa, respectively), the spindle speed was 

900 min–1. Samples of various steels were studied after ion nitriding in hydrogen and hydrogen-

free environments with different heat treatments and chromium and titanium nitride coatings. 

The results of comparative studies of wear resistance and contact endurance of samples are 

shown in Tables 2 and 3 and in Figure 2. 

 

Fig. 2. Dependence of pitting fatigue life on wear intensity 

Figure 2 – Dependence of 20Kh13 steel wear under rolling friction with sliding on the number of 

cycles under various ball loads: N=50, 100, 160, and 250N. At a friction coefficient of 0.4, these 

wear cycles reach the surface. Many researchers believe that tangential forces at the contact 

surface cause tensile stresses, which contribute to the formation of microcracks. Residual 

compressive stresses in the surface layer reduce tensile stress and contribute to increased crack 

resistance of the material. 
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Table 2.  Physical, mechanical and tribological characteristics of samples after ion nitriding and heat treatment and their 

durability during rolling friction tests in I-20 lubricant, ball load 150N (p0=3180 MPa) 

No Steel 

grade 

Heat 

treatment / 

technology 

/ coating 

Surface 

microhardness, 

MPa 

Base 

microhardness, 

MPa 

Rolling track 

microhardness 

after testing, 

MPa 

Coating 

thickness, 

µm 

Wear 

intensity, 

I·10⁻¹¹ 

Pitting 

fatigue 

life, 

N·10⁶ 

cycles 

1 20X13 without 

heat 

treatment 

2550 2370 3460 0 620 0,58 

2 20X13 ion 

nitriding in 

60% Ar + 

40% N₂ 

atmosphere 

7380 2370 3650 260 570 0,88 

3 45 without 

heat 

treatment 

3200 2450 3290 0 600 0,6 

4 45 ion 

nitriding in 

60% Ar + 

40% N₂ 

atmosphere 

7440 2450 4100 280 452 0,98 

5 45 quenching 5100 4110 5230 0 21,2 9,1 

6 45 quenching 

+ ion 

nitriding in 

60% Ar + 

40% N₂ 

atmosphere 

7460 4110 7200 290 16,1 12,9 

7 45 ion 

nitriding in 

60% Ar + 

40% H₂ 

atmosphere 

8420 2450 4050 290 440 0,75 

8 45 quenching 

+ ion 

nitriding in 

60% Ar + 

40% H₂ 

atmosphere 

8560 4110 8210 300 15,4 11,2 

9 20X13 ion 

nitriding in 

60% Ar + 

40% H₂ 

atm. 

7640 2370 3670 280 580 0,7 

The figure 2 shows that plastic deformation accounts for the majority of the total wear, increasing 

sharply with increasing ball load. Ball slippage wear is insignificant due to the low slip 

coefficient (0.4%). When cylindrical rollers were used as rolling elements, the slip coefficient was 

17.7%, and wear from sliding friction, before pitting, was predominant compared to plastic 

deformation of the surface layer. The contact fatigue life of the samples was 25-30% lower. This is 

explained by the fact that point contact of the material with the balls results in a more favorable 

volumetric stress-strain state compared to the linear contact of cylindrical rollers. 
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Research by many authors [1-5] shows that maximum stresses under contact loads and bending 

occur in the surface layers, leading to microcracks and failure of both the surface and the 

structure as a whole due to the development and propagation of microcracks from the surface 

into the core. Therefore, to improve the wear resistance and durability of structural components, 

and gears in particular, both the surface and the core should be strengthened, but with different 

physical and mechanical properties—large ones on the surface and smaller ones in the core. In 

other words, the surface layer structure should have a gradient structure corresponding to the 

stress-strain state occurring in the component. 

Model studies of the stress-strain state of a plate with multilayer coatings under a contact 

distributed load on the contact area with normal forces changing according to a parabolic law 

have shown [11] that an increase in the strength and durability of the coating-base composition 

can be achieved by: 

- application of hardening coatings with a high modulus of elasticity and a smooth gradient of 

change in properties in depth from the surface to the base (diffusion coatings); 

- reducing the gradient of properties by depth, due to an increase in the coating thickness and an 

increase in the rigidity of the base; 

- application of thin low-modulus films to the coating surface, providing an increase in the 

contact area and anti-friction properties. 

These recommendations are clearly confirmed by the results of experimental studies (Table 3), in 

particular: application of a strengthening high-modulus coating of titanium and chromium 

nitride to a hard base; production of diffuse nitrided layers with a smooth gradient of change in 

hardness across the thickness; application of oxidizing films to nitrided layers; obtaining an 

optimal ratio of the hardness of the coating and the base during nitrohardening significantly 

increase the wear resistance and contact endurance of materials during rolling with slippage. 
 

Table 3. Physical, mechanical and tribological characteristics and durability of samples after ion nitriding, heat 

treatment and other coatings during rolling friction tests in I-20 lubricant, ball load 150N (p0=3180 MPa) 

No Steel  

grade 

Heat  

treatment / 

technology/ 

coating 

Surface  

Micro- 

hardness,  

MPa 

Base 

micro-

hardness, 

MPa 

Rolling  

track micro- 

hardness after  

testing, MPa 

Coating 

thickness, 

µm 

Wear 

intensity, 

I·10⁻¹¹ 

Pitting 

fatigue 

life, 

N·10⁶ 

cycles 

1 ШХ15 

without heat 

treatment 3840 3340 3340 0 594 0,7 

2 ШХ15 

without heat 

treatment + ion 

nitriding 9180 2680 5400 300 312 1,08 

3 ШХ15 

without heat 

treatment + 

oxidation 6140 2680 5420 300 210 1,25 

4 ШХ15 quenching 7210 7210 7130 0 8 25,1 

5 ШХ15 

quenching + 

ion nitriding 9180 4970 7160 300 8,4 24,2 

6 ШХ15 

quenching + 

ion nitriding 7660 5800 7300 290 7,5 26,4 

7 ШХ15 

quenching + 

ion nitriding 7860 5900 6350 120 13 22,8 
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8 ШХ15 

quenching + 

TiN (CIB 

method) 10400 5120 5200 5 15 22 

9 ШХ15 

without heat 

treatment + 

TiN (CIB 

method) 14000 2680 3350 5 564 0,75 

10 ШХ15 

quenching + 

galvanic Cr 

coating 12000 7210 7140 5 7,6 28,4 

11 ШХ15 

quenching + 

galvanic Cr 

coating 12000 7210 7300 10 7 30,1 

12 ШХ15 

nitroquenching 

mode 1 8700 7200 7630 330 3,6 40,8 

13 ШХ15 

nitroquenching 

mode 2 7700 7420 7420 350 3,2 48,8 

14 ШХ15 

nitroquenching 

mode 3 7300 7200 7380 410 3,8 38,4 

15 ШХ15 

nitroquenching 

mode 4 8500 7410 7410 320 3,7 38,7 

 

In the contact zone, under load, normal stresses arise with a maximum on the surface at the 

center of the contact area and shear stresses with a maximum at a certain depth. The presence of 

friction forces causes the maximum shear stress to shift from depth to depth. 

 

Fig. 3 Surface Roughness vs Number of Cicles 

The graph 3 illustrates the dependence of the displacement amplitude ( U ) (μm) on the number 

of loading cycles ( N \times 10^6 ) for steels with and without nitriding treatment under 

different applied loads (50, 100, 160, and 250 N). The solid curves correspond to steel without 

heat treatment, while the dashed ones represent nitrided steel (treated according to regime 1a). 

As the number of loading cycles increases, the displacement gradually grows for both materials, 

but the values for nitrided steel remain significantly lower throughout the entire range of cycles. 

This indicates a considerable increase in surface hardness and fatigue strength due to nitriding. 

For example, at the highest load of 250 N, the displacement of untreated steel reaches 70–80 μm, 
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while the nitrided surface exhibits only 35–40 μm deformation, which means a reduction of 

about 40–50%. The curves show that, during the initial stage of loading (up to 0.4×10⁶ cycles), the 

deformation grows rapidly due to the running-in process, after which the growth rate stabilizes. 

Nitrided steel demonstrates an earlier stabilization of the curve, indicating the formation of a 

stable surface layer resistant to plastic deformation and microcrack propagation. In contrast, the 

untreated steel continues to accumulate deformation, showing signs of progressive surface 

fatigue. The overall tendency confirms that surface nitriding significantly improves the resistance 

of steel to cyclic contact loading by forming hard nitride phases (Fe₂–₃N, Fe₄N) that reduce wear 

and prevent structural damage. Therefore, nitriding can be considered an effective method for 

enhancing the operational durability and dimensional stability of mechanical components such 

as gears, shafts, and cutting tools subjected to long-term cyclic stresses. 

7. Conclusion 

Thus, an analysis of operating conditions and the stress-strain state of gear teeth revealed that 

different areas of the tooth surface experience varying stress levels and types. The most 

hazardous surface areas include the root, the gullet, and the mid-tooth surface region located at 

the engagement pole. Therefore, it is clear that these surface areas require different surface layer 

properties. This can be achieved by strengthening the tooth surface, particularly in hazardous 

areas, by applying hardening coatings with a gradient structure across the depth; by creating 

optimal residual compressive stresses in the surface layers; and by strengthening the tooth core. 

This requires heat treatment of the tooth material to increase the core hardness and the 

application of hardening coatings using thermochemical treatment in hydrogen-free 

environments, with the physical and mechanical properties and phase composition of the 

coatings controlled depending on the operating conditions and stress-strain state of the gears. 
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The influence of torch discharge treatment on carbon-filled plastics with epoxy 

binder and carbon-filled plastics with cloth layer on the surface was explored. 

Was elaborated the configuration of potential electrode for getting the stable 

torch discharge in positive half-period and corona in negative half-period of AC. 

The limiting wetting angle of materials surface after an activation by torch 

discharge was measured. Was shown an increase of adhesion between metal 

coating and treated surface. Was detected a big effect of electrical treatment in 

static regime when the electrical discharge influence on the surface is summed-

up by the action of electron-ion components and active gaseous products action. 
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1. Introduction 

Exposure to no equilibrium electrical discharges in gases can alter the physicochemical 

properties of the surface layer of materials, including increasing surface energy, which improves 

adhesion [1]. One interesting form is the torch discharge, which occurs in electronegative gases, 

including air, in non-uniform fields of a specific configuration [2] at interelectrode distances of 2-

20 cm. It consists of a sequence of cathode-directed streamers and, in terms of its development, is 

intermediate between a corona discharge and a spark discharge. Like any transient form, the 

torch discharge is unstable, and its stabilization requires current limiting measures, for example, 

by using limiting resistors or creating a special field configuration. 

In devices implementing a torch discharge [2,3], a metal “pin” serves as the anode, and a “plane” 

serves as the cathode. Conditions in the gap at a sufficient distance from the anode have little 

effect on the formation and stability of the torch discharge, as streamers are generated and 

formed in the region of high field strength near the anode. This characteristic creates the physical 

prerequisites for using torch discharge to modify the surface of products with a wide range of 

shapes, sizes, and electrical properties. For example, in [3], it was shown that an increase in 

adhesion properties after treatment in a torch discharge at a constant voltage is observed for 

wool fibers, fluoroplastic, and polyethylene threads. 
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At the same time, using torch discharge at a constant voltage to modify the surface of solid 

dielectric materials is difficult, even if a thin dielectric layer is located on a conductive substrate, 

since charge accumulation on the dielectric surface leads to "locking" of the discharge. 

With alternating voltage, a torch discharge is ignited during each positive half-cycle, and an 

avalanche corona during each negative half-cycle of the applied voltage. The accumulated 

positive charge on the dielectric surface during the torch discharge is neutralized by the negative 

corona. 

2. Methodology and experimental part 

This study examined the effect of a torch discharge in air on the surface of composite materials-

carbon fiber reinforced plastics with or without fiberglass sublayers. Experiments with electric 

discharge processing were conducted using the setup (fig. 1), where HVS is the high-voltage 

source; kV is a kilovoltmeter, Rlim and R are the limiting and measuring resistances; DG is the 

discharge gap; D1 and D2 are diodes and ELO is the electronic oscilloscope. 

A refractory (molybdenum) “pin” electrode with a diameter of 1.5 mm and a cone-shaped end 

was used as the torch-forming device [4]. The cylindrical portion of the “pin” was covered with a 

dielectric nozzle. The working end of the “pin” faced the samples, which were positioned on a 

flat surface. The other end was attached directly to a limiting resistor (KEV-5) with a value of 10-

20 Mom. 

 

Fig. 1 Schematic diagram of the experimental setup for processing samples in a torch discharge 

To determine the stable combustion mode of the torch discharge, geometric parameters 

characterizing the degree of influence of the dielectric nozzle on the field were varied: the 

distance to the work piece (2-10 cm) and the depth of the electrode insertion into the nozzle end 

(0-3 mm). As a result, an optimal anode design was experimentally determined that ensured a 

stable torch discharge during the positive half-cycle of alternating voltage at industrial 

frequency. A stable corona was ensured during the negative half-cycle. With a distance between 

the electrodes of L=4 cm, the torch wetting spot had a diameter of ~1.5 cm. 

The presence of two diodes, D1 and D2, in the recording circuit allowed for separate 

measurement of the effective current values during each half-cycle of the applied voltage. 

Current during the negative half-cycle was recorded by connecting diode D1, and current during 

the positive half-cycle by connecting diode D2. The current-voltage characteristic of the torch-
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forming device under alternating voltage is shown in figure 2, where curve 1 corresponds to the 

effective current value with the diodes disconnected, curve 2 to the positive half-cycle, and curve 

3 to the negative half-cycle. 

 

Fig. 2 Current-voltage characteristic of the torch-forming device at alternating voltage 

The discrepancy between the total current and the sum of the currents during the positive and 

negative half-cycles of the alternating voltage is due to the imperfections of the diode 

characteristics. The appearance of a stable torch during the positive half-cycle is noted, according 

to oscillograms and visual observation, at U=12 kV. At U > 21 kV, spark channels are observed 

against the background of the stable torch. When a direct positive voltage of 22 kV is applied to 

the torch-forming device, a torch discharge is ignited. However, it has been noted that the torch 

discharge stability at direct voltage is significantly lower than with alternating voltage, and the 

stable torch currents for the same electrode configuration are lower. The stable torch range is 22-

28 kV. 

The applicability and effectiveness of torch discharge at direct and alternating voltages was 

tested when processing carbon fiber reinforced plastic (CFRP) plates and CFRPs with two 

fiberglass sublayers on each side. Since carbon fiber reinforced plastic (CFRP) is a conductive 

material, torch treatment can be used to modify its surface with both direct and alternating 

voltages. The surface of carbon fiber reinforced plastic (CFRP) plates with fiberglass sublayers is 

nonconductive, so torch treatment with alternating voltage is the only option. 

The degree of modification was determined by the change in the wetting angle θ, which is 

related to the value of the work of adhesion forces by the Dupré-Young relationship: 

𝑊𝐴 = 𝛾(1 + cos 𝜃) (1) 

where   is the surface tension of the working fluid, θ is the wetting angle (for distilled water = 

72.75*10-3 N/m or 72.75 mJ/m2). 

The average value was calculated based on measurements at three points on the sample. The 

samples were treated at voltages of 15.5 and 19 kV with torch currents of 32 and 136 μA and 

negative half-cycle corona currents of 20 and 30 μA, respectively. 

At 15.5 kV, the corona and torch currents differ by a factor of 1.5. This treatment of the carbon 

fiber reinforced plastic surface results in a monotonic increase in adhesion (curve 1, fig. 3). The 

main increase in adhesion is observed in the first 100 s of treatment, followed by insignificant 
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growth. After 5 min of treatment, adhesion cos =0.82. Treatment of the surface of carbon fiber 

reinforced plastics with a sublayer also leads to a monotonic increase (curve 2). The main 

increase is noted in the first 50 s of treatment. Five-minute treatment yields adhesion  

cos =0.86. At a voltage of U=19 kV, the torch current exceeds the corona current by four times. 

In this case, a monotonic increase in adhesion is observed during treatment of both carbon fiber 

reinforced plastics and CFRPs with a sublayer (curves 3 and 4, respectively). After five minutes 

of treatment, adhesion cos =0.94 for carbon fiber reinforced plastics and cos =0.95 for carbon 

fiber reinforced plastics with a sublayer. 

It was noted that with increasing discharge exposure time, the curves cos (t) reach saturation, 

which can be explained by the onset of a dynamic equilibrium between the processes of 

formation and destruction of groups that increase surface adhesion. Since, as the modified layer 

is removed, deeper layers of the sample will be exposed to the discharge. 

When machining carbon fiber reinforced plastic (CFRP) samples with a sublayer, a characteristic 

peak appears on the dependence curve cos (t), which is reproduced under different machining 

conditions. This peak may be due to two different mechanisms increasing surface adhesion. 

 

Fig. 3  Dependence of the change in the wetting angle of the surface of carbon fiber reinforced                                                 

plastics (1, 3, 5) and CFRPs with a fiberglass sublayer (2, 4) on the duration of treatment in a torch discharge:                               

1, 2 – discharge current 90 μA at alternating voltage; 3, 4 – discharge current 150 μA at alternating voltage;                                

5 – discharge current 50 μA at constant voltage 

Under the first machining condition (U=15.5 kV), the steepness of the initial portion of curve 3 is 

approximately three times greater than that of curve 1. This suggests that the increased 

machining effect is attributed to the effect of the torch discharge during the positive half-cycle. It 

is possible that some of the accelerated modification may also be attributed to the increase in 

negative corona current. 

Under the second condition, at U=19 kV, higher values of adhesion work are achieved compared 

to the first condition, and the difference in wetting angles at different points on the same sample 

after machining is small, indicating uniform machining in this condition. Machining samples at 

U > 19 kV yielded higher average values, but due to the presence of sparks and their localization 

at certain points on the surface, machining of the samples was uneven. Furthermore, in this case, 

the appearance of spots on the surface of the carbon fiber reinforced plastics with a sublayer after 

processing was noted. 
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Under constant voltage, the carbon fiber reinforced plastic surface was treated at U=27 kV and a 

torch current of 50 μA. The dependence cos (t) for the treatment of the carbon fiber surface is 

shown in figure 3 (curve 5). 

It can be seen that the dependence cos (t) peaks at 100 s (cos (t)=0.91) and then decreases, 

indicating that prolonged treatment degrades the previously achieved effect. Compared to 

treatment of carbon fiber reinforced plastic samples in a torch discharge under alternating 

voltage, the steepness of the cos (t) curve under constant voltage is greater. However, the 

ability to process at higher average currents and achieve better treatment results is an advantage 

of torch processing under alternating voltage. Furthermore, the use of alternating voltage 

simplifies the design and operation of the installation. 

Experimental results show that a bipolar mode combining a torch discharge with a negative 

corona may prove optimal for practical use in electrical discharge surface modification of 

composite materials. 

Furthermore, this mode enables surface modification of large dielectrics with equal torch and 

corona discharge currents, where the positive charge from the torch accumulated on the surface 

is compensated by the negative charge of the corona. In this case, a longer treatment period is 

required to activate the surface. However, for small samples, treatment with higher torch 

currents exceeding the corona current is possible, as this allows the charge to drain from the 

surface. 

Since the effect of an air discharge on the surface of materials involves the action of the electron-

ion component of the discharge and active oxygen-containing gaseous compounds (ozone, 

nitrogen oxides, and atomic oxygen), the objective was to determine which of these factors is 

decisive when treating the surface of carbon-fiber reinforced plastics and carbon-fiber reinforced 

plastics with a sublayer using a torch discharge under alternating voltage. To this end, the 

following experiments were conducted. First, during treatment near a flat electrode, the near-

electrode zone was purged with an air flow under an excess pressure of 0.5 atm. This prevented 

oxygen-containing discharge products from coming into wetting with the sample surface, and 

only the electron-ion component of the discharge contributed to the surface modification. 

Treatment was then carried out while simultaneously using a metal mesh in wetting with the flat 

electrode. It was positioned above the sample surface parallel to their plane. In this case, the 

samples were exposed only to gaseous discharge products. 

The wetting angle measurements after torch discharge treatment are presented in the table. The 

table lists the wetting angle values  for carbon fiber reinforced plastics and carbon fiber 

reinforced plastics with a sublayer at various torch discharge treatment times. The first row lists 

the  values for static treatment, the second row for blast treatment, and the third row for 

treatment with a mesh. 

It is evident that the strongest treatment effect is achieved in static mode, i.e., with the 

simultaneous action of the electron-ion component of the discharge and gaseous discharge 

products. When exposed to the electron-ion component, the modification effect is slightly 

weaker. Gaseous discharge products have either a very weak effect or no effect at all. 

As can be seen from the table, the effect of an electric discharge is determined by the combined 

action of the electron-ion component of the discharge and active gaseous compounds. A similar 

conclusion was reached in [5] when studying the electrical aging of polymer films in a barrier 

discharge. 
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Wetting angle measurement data for different types of carbon fiber reinforced plastics 
 

Table 1. 

Material Material treatment time, min. 

 

 

Carbon fiber reinforced plastic 

1 3 5 

Wetting angle  

38 30 22 

41 33 29 

62 57 57 

Carbon fiber reinforced plastic with 

sublayer 

38 27 20 

40 35 34 

75 70 70 

The role of gaseous discharge products in the modification of carbon fiber reinforced plastics 

with a sublayer is particularly evident. Since fiberglass is resistant to oxidation initiated by ozone 

and nitrogen oxides, as can be seen from the table, exposure to gaseous compounds alone does 

not cause changes in its adhesive properties. Therefore, if the effects of the discharge and its 

gaseous products are simply cumulative, then the absence of the latter should not affect the 

adhesion properties of carbon fiber reinforced plastics with a sublayer. However, it turned out 

that for these materials, the presence of ozone and nitrogen oxides in the discharge zone 

significantly enhances the change in adhesion properties. 

In [6], it was shown that modification of carbon fibers in an ozone environment increases their 

surface adhesion as a result of oxidation. IR spectroscopy after ozonation of the fibers revealed 

the appearance of a broad band at 1050 cm-1, caused by the vibration of structural fragments 

containing single C-O-C bonds. It is likely that during electric discharge treatment, with the 

combined action of electron-ionic action and gaseous oxidants, adhesion should increase 

significantly more than that obtained in [6]. 

8. Discussion of results 

To determine the qualitative change in the carbon fiber surface after treatment in a torch 

discharge, the IR transmittance spectra of the samples were studied. IR transmittance spectra 

were recorded for powder obtained by scraping from the carbon fiber surface to a depth of 10 

μm. Powder, obtained from torch-exposed samples, as well as powder from untreated samples, 

were sintered into pellets using low-melting chalcogenide glass as the base material. IR spectra 

were then recorded using a SPECORD-751 setup. 

Samples of fiberglass (the basis of the fiberglass sublayer in carbon fiber reinforced plastics with 

a sublayer) and cured epoxy resin were also pelletized and exposed to a flare discharge. The 

resulting IR transmittance spectra showed no noticeable changes in the treated fiberglass and 

epoxy resin samples compared to the untreated ones. This may be due to the fact that exposure 

to the discharge does not alter the chemical composition of the samples' surfaces. 

In [7], no changes were noted in the epoxy resin after electric discharge treatment. In [8], non-

stoichiometric oxygen was detected on the surface during glow discharge treatment. It is 

possible that such oxygen also forms after treatment of the fiberglass and epoxy resin, but IR 

spectroscopy cannot detect it. In CFRP samples treated in a torch discharge, an intense broad 

band appears at 1062 cm-1, which can be attributed to C-O vibrations. The observed increase in 

the work of surface adhesion forces in reducing the wetting angle is associated with oxidation of 

the CFRP surface and enrichment of the fiberglass surface with oxygen in the torch discharge. 
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Control and torch-treated CFRP samples and CFRPs with a sublayer were coated with an Al 

coating ~1 µm thick using thermal sputtering and magnetron methods. Coating adhesion to the 

surface, measured on a tensile testing machine, was 50-70% greater for the treated samples 

compared to the untreated ones. 

When a metal coating is sprayed onto the sample surface after torch discharge treatment, metal 

atoms interact with non-stoichiometric oxygen and surface atomic groups, releasing 

corresponding oxidation energy at the film-substrate interface. This process is accompanied by 

the formation of valence bonds between substrate atoms and metal atoms through oxygen 

bridges. 

9. Conclusion 

A similar conclusion was reached when processing glass in a glow discharge [8], and the 

increase in adhesion of metals to glass after glow discharge treatment was explained by the 

formation of an intermediate layer of oxidized condensate. Better results were obtained when 

treatment in an oxygen-containing environment. 

Treatment of carbon fiber reinforced plastics in a torch discharge in air leads to oxidation of the 

surface, accumulation of non-stoichiometric oxygen in it, which causes an increase in the 

adhesion of metal coatings applied to them. 
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The paper presents the results of an experimental study of the effect of oil on the 

heat transfer rate at boiling of mixed refrigerant R406A. Since the air condition-

ning system is not a pure refrigerant, but a mixture of oil with a concentration 

of up to 8%, such an amount of oil affects both hydrodynamics and heat exchange 

in the evaporators. The experimental work covers the entire range of regime 

parameters typical for these systems. There is shown the process of changing oil 

concentration in the pipe, as the working fluid boils, proving that most of the oil 

pipe does not im- pair the heat exchange in the course of two-phase flow boiling. 

Different modes of refrigerant R406A boiling dynamics have been defined, and 

each mode is given a quantitative assessment in terms of the effects of the oil and 

explaining of this effect on the fluid flow and heat transfer based on visual 

observations and the experiment results. The main factor of the effect is the 

freon-oil foam, which increases the proportion of the wetted surface in the wave 

and stratified modes and the heat transfer rate to 30%.  

Keywords: 

heat transfer; 

hydrodynamics; 
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JEL classification: L64,Q41, Q42,O33 

 

1. Introduction 

After the cessation of the use of popular freons, which were pure substances, in air conditioning 

systems due to environmental requirements, multicomponent refrigerants were proposed 

instead, for example R406A, which is a zeotropic mixture with significant non-isothermality 

during phase transitions. This refrigerant boils in the pipes of evaporators or air coolers. 

Evaporators with in-tube boiling have a lower charge of the working fluid, but also a lower heat 

transfer coefficient during boiling, which leads to the need to increase the heat exchange surface. 

The boiling of the refrigerant in the pipe determines the complex hydrodynamics of the two-

phase flow as the vapor content changes, which largely determines the intensity of heat transfer 

[1,3]. All this speaks to the ambiguity and complexity of the heat transfer process during in-tube 

boiling, which is aggravated by the presence of oil soluble in freon. At some operating 

concentrations, oil foams and distorts the hydrodynamics of the flow and the intensity of heat 

transfer during boiling. In addition, the presence of oil up to 8% significantly changes such 

properties of the working fluid as viscosity, thermal conductivity, which will also affect heat 

transfer. 
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To lubricate compressor parts, synthetic oil BSE 32 is used, which is highly soluble with freon 

and circulates with it in the system. As confirmed by special studies [1], oil carryover from the 

compressor is 0.4÷1.2% of the working fluid and taking into account the separation of 

approximately 50% in the oil separator, carryover to the condenser and then to the evaporator 

will be 0.2÷0.6 %. During in-tube boiling in the evaporator, as the refrigerant moves, the oil 

concentration ξm increases. Since no liquid should enter the compressor, it boiling off in the 

evaporator should be almost complete, up to 90–95%. The remaining liquid refrigerant 

evaporates in the heat exchanger and suction pipe, and clean oil enters the compressor in small, 

non-hazardous portions. 

2. Materials and results of the study  

The experiments were carried out on a special stand with R406A refrigerant in a pipe 3.3 m long, 

13 mm in diameter, with a wall thickness of 0.5 mm, made of 1Х18НТ steel. Range of changes in 

operating parameters: mass velocity ωρ = 30÷150 kg/(m2·s); boiling temperature t0 = 5÷–20 °C; 

heat flux density q = 1÷10 kW/m2. Oil concentration at the pipe inlet ξm = 0÷4%. For visual 

observations, glass tubes are installed at the inlet and outlet of the pipe. 

In Fig.1 shows the change in oil concentration along the length of the pipe in an evaporator with 

in-tube boiling. 

 

Fig.1. Dependence ξм = f(L) for complete boiling of the R406A refrigerant  in an evaporator with in-tube                             

boiling at the initial oil concen 1 – ξm = 0.25%; 2 – ξm = 0.5%; 3 – ξm = 1% 

According to Fig.1 at the outlet of the evaporator pipe, the oil concentration ξm does not exceed 

5–6%, and in most of its part ξm – 3%. 

Previous studies have confirmed that when the oil concentration is less than 3%, the boiling 

intensity of the refrigerant becomes greater than when the pure working substance boils [2]. It is 

also noted that at ξm < 0.4% the hydrodynamics of the refrigerant flow will not change, and at 

high concentrations during boiling in the pipes foaming is observed, so the influence of oil on the 

hydrodynamics of boiling R406A in the evaporator will certainly be affected. 

The degree of influence of oil on heat transfer depends on the flow mode. The refrigerant enters 

the evaporator after the throttling valve at a vapor content X = 0.1÷0.15 kg/kg. This corresponds 

to projectile or wave motion of the flow. The emulsion flow can be pumped. 

In an emulsion flow, the addition of oil has virtually no effect on heat transfer, since heat transfer 

α is determined mainly by the speed of fluid movement, and at such an oil concentration ξm the 

properties of the working substance practically do not change and there is no foaming. 
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The heat transfer coefficient can be calculated using the formula 

 𝑁𝑢 = 0,021 ·  𝑅𝑒0,8  · 𝑃𝑟0,43 (1) 

In the slug flow mode, the presence of oil also does not affect heat transfer, since the oil foam is 

located inside the bubble and does not come into contact with the heat transfer surface [4]. And 

in this mode, heat transfer αcon is determined by the speed of the flow, and boiling αboil 

intensifies heat transfer little. 

When processing experimental data in slug mode, the dependence was obtained 

𝛼 = 𝛼𝑐𝑜𝑛 √1 + 𝛼𝑐𝑜𝑛 · 𝛼𝑐𝑜𝑛
33

 (2) 

In equation (2), the heat transfer coefficient during forced convection of liquid αcon is calculated 

according to (1) based on the true fluid velocity, and αboil - according to the dependence 

𝑁𝑢 = 2,38 ·  𝐾𝑝
0,25 · (𝑃𝑒 · 𝐾𝑡

0,63 · 𝐾𝐺
0,5)0,75 (3) 

Where 𝐾𝐺 = 𝜏
𝑞 ·⁄ √𝛿

𝑞⁄ · (𝑝′ − 𝑝") – characterizes the relationship between the heat of 

evaporation and free-free energy of the surface layer. 

In the wave mode, the presence of oil foam significantly increases the wetted surface. Under 

conditions that corresponded to the wave regime for a pure refrigerant, in the presence of oil, the 

entire heat transfer surface turned out to be wetted by a wave or oil foam. 

In Fig.2 shows a graph of the temperature distribution along the pipe wall in one section in 

relation to t0 in the wave mode with and without oil. 

 

Fig.2. Temperature distribution along the pipe wall in wave mode with and without oil at                                                              

ωρ = 100 kg/(m2 s); q = 2 kW/m2; P = 0.539 MPa 

At ξм = 0, the temperature in the upper part of the pipe is higher than in the lower part, which is 

explained by the presence of a dry wall. 

The intensity of heat transfer associated with boiling is not yet high, since in these regimes 

undeveloped boiling is observed. 

Intensification of heat transfer in the presence of oil occurs mainly due to an increase in the 

proportion of the wetted surface in the upper part of the pipe. The effect of oil on α in this mode 

is ambiguous. As visual observations confirmed, at ξm < 0.4% this influence does not exist, since 

there is no foaming and the oil concentration practically does not change the properties of the 

working fluid. An increase in ξm > 3% leads to a decrease in heat transfer. 

In Fig.3 and 4 show the increase in heat transfer coefficient in the presence of oil compared to α 

of pure R406A refrigerant. 

 



Effect of Oil on the Heat Transfer of Mixed Refrigerant Boiling in Evaporator Tubes 

147 

  
Fig.3. Ratio of coefficients α oil / α pure refrigerant in wave mode: 

 ωρ = 50 kg/(m2 s); q = 2 kW/m2; t = –10 °С 

 

 
Fig.4. Ratio of coefficients α oil / α pure refrigerant in stratified mode: 

 ωρ = 100 kg/(m2 s); q = 2 kW/m2; t = –20 °С 

At the beginning of the regime, which corresponds to stratification during boiling of a pure 

refrigerant, the upper part of the pipe remains wetted with oil plugs, which move in large 

volumes along the surface of the liquid or fly in small portions in the vapor volume. In Fig.5 

shows the temperature distribution in the pipe section at the parameters that determine the 

stratified flow regime of pure refrigerant. 

 

  
Fig.5. Ratio α/αH in the pipe section in stratified mode: ωρ = 50 kg/(m2 s); q = 2 kW/m2;  

 t = –10 °С; 1, 2 – at the beginning of the mode, 3, 4 – at the end of the pipe 

 

The maximum heat transfer at the beginning of the mode is noted in the upper part, since it is 

wetted by foam. At the end of the pipe with a vapor content of X = 0.90÷0.95 kg/kg, the presence 

of a low-boiling stream at the lower generatrix of the pipe with a small cap of foam was visually 

noted. There is no foam in the steam area. Here, heat transfer determines the speed of steam 

movement and the boiling point of a freon-oil solution with a high oil content. 
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To determine the average heat transfer coefficient in a stratified mode of movement of a two-

phase flow, W/(m2 K), we can propose the dependence 

 𝛼 = 𝛼𝑗 ·
𝐹𝑤

𝐹
+ 𝛼𝑛  · (1 −

𝐹𝑤

𝐹
 ) (4) 

where, αj is the heat transfer coefficient of the boiling liquid; αn is the heat transfer coefficient of 

moving steam; Fw – wetted surface of the pipe section, m2; F – pipe cross-sectional perimeter, m2. 

3. Conclusion 

Calculation using formula (4) confirmed good agreement with the experimental results. 

As a result of studying the effect of oil on the hydrodynamics and heat transfer of a two-phase 

boiling flow of refrigerant R406A: 

 – calculation formulas and criterion dependencies were obtained that make it possible to 

calculate the heat transfer coefficient during boiling of the R406A refrigerant with oil in the pipes 

of the evaporators of cooling systems; 

– the influence of oil on the hydrodynamics of a two-phase flow was assessed; 

– the influence of oil on heat transfer during boiling was determined both over the cross-section 

of the pipe and along its length.  
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1. Introduction 

Corrosion is a naturally occurring phenomenon that results in the gradual degradation of metals 

and alloys through chemical or electrochemical reactions with their environment [1]. This 

process leads to significant economic losses, reduced structural integrity, and compromised 

safety in various engineering systems [2]. Industrial infrastructures such as pipelines, bridges, 

ships, and power plants are particularly vulnerable to corrosion, making its control and 

prevention a major scientific and engineering challenge. The study of corrosion mechanisms 

provides a foundation for developing effective protective strategies, including coatings, 

inhibitors, and material selection [3]. Understanding the electrochemical behavior of metals in 

different environments allows for the optimization of corrosion-resistant materials and the 

design of long-lasting structures [4]. Moreover, recent advances in nanotechnology and surface 
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engineering have opened new perspectives for enhancing corrosion resistance through the 

development of smart and self-healing materials. Given the complexity of corrosion phenomena, 

research in this field integrates principles of electrochemistry, materials science, and 

environmental engineering [5]. Continuous investigation into the kinetics, thermodynamics, and 

environmental factors influencing corrosion contributes to improving sustainability and 

durability in modern industries [6,7]. 

2. Materials and methods 

The analysis of corrosion in oil pipelines on the Absheron Peninsula is a highly relevant issue. 

The optimal solution to this problem lies in the mathematical modeling and analysis of the 

kinetics of the corrosion process in oil pipelines located on the Absheron Peninsula. The 

simulation was carried out considering temperature, soil chemistry, and other significant 

factors. Let us first consider the exponential model of corrosion kinetics. The kinetics of 

corrosion can be described by the following exponential model: 

𝑚(𝑡) = 𝑚0 ∙ exp (−𝑘 ∙ 𝑡) (1) 

Here: 

•  m(t) – time-dependent mass (g/m²) 

•  m₀ – initial mass (7850 g/m²) 

•  k – corrosion rate constant (1.1×10⁻⁶ s⁻¹) 

•  t – time (in seconds) 

Figure 1 presents a graph illustrating the mass loss in oil pipelines due to corrosion over a 10-

year period: 

 
Figure 1. Graph illustrating the reduction of steel pipe mass in oil pipelines due to corrosion 

As can be seen from the graph, the corrosion process leads to a very rapid mass loss, and within 

approximately one year, the pipe material may undergo complete degradation. 

To determine the optimal solution to this problem, let us examine the influence of internal factors 

in the Absheron Peninsula. Specifically, we investigate the effects of internal parameters — 

chloride ions, pH, and microstructure — on the corrosion process in oil pipelines. The model has 

been calibrated using real data and expressed through a regression equation as follows: 

Sample Ph [Cl⁻] (ppm) Microstructure (μ) k_eff (1/s) 

Sample 1 5.5 1000 0.9 2.0 × 10⁻⁶ 

Sample 2 7.0 500 0.6 1.1 × 10⁻⁶ 

Sample 3 8.0 200 0.3 5.0 × 10⁻⁷ 
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The effective corrosion constant is modeled as follows: 

 𝐾 𝑒𝑓𝑓 =  𝑎₀ +  𝑎₁ ·  [𝐶𝑙⁻]  +  𝑎₂ ·  𝑝𝐻 +  𝑎₃ ·  𝜇 (2) 

Here: 

•  [Cl⁻] – concentration of chloride ions (ppm) 

•  pH – acidity of the environment 

•  μ – microstructure parameter (defect density) 

The following equation was obtained as a result of the multiple regression analysis: 

𝐾 𝑒𝑓𝑓 =  3.2 × 10⁻⁶ +  1.5 × 10⁻⁹ · [𝐶𝑙⁻]  −  2.8 × 10⁻⁷ · 𝑝𝐻 +  4.1 × 10⁻⁷ · 𝜇 (3) 

The model indicates that high concentrations of chloride ions and an acidic environment 

accelerate corrosion kinetics. 

Developing a corrosion model for oil pipelines in the Absheron Peninsula that accounts for 

external factors is one of the most important and significant aspects. In this study, the effects of 

external factors—temperature, humidity, soil acidity, and chloride concentration—on the 

corrosion process of oil pipelines in the Absheron Peninsula were mathematically modeled and 

simulated. 

The corrosion rate is given by the following equation: 

𝐶𝑅 =  𝑘 ∙  𝑒𝑥𝑝(−𝐸𝑎 / 𝑅𝑇)  ∙  𝑓(𝑅𝐻, 𝜌, 𝑝𝐻, 𝐶𝑙⁻) (4) 

Here:  

CR – corrosion rate (μm/h), 

T – temperature (in Kelvin), 

Ea – activation energy, 

R - universal gas constant, 

f – a function of humidity, soil resistivity, pH, and chloride ion concentration. 

The effects of external factors influencing the corrosion of oil pipelines in the Absheron Peninsula 

were calibrated based on real samples, and the actual data used and the results obtained are 

presented as follows: 

Sample № Temperature (°C) Humidity (%) pH Salinity (g/L) Actual Corrosion 

(mm/year) 

Predicted 

Corrosion 

(mm/year) 

1.0 28.0 75.0 6.8 2.5 0.32 0.34 

2.0 33.0 85.0 5.9 3.2 0.46 0.45 

3.0 22.0 60.0 7.2 1.8 0.24 0.26 

4.0 30.0 78.0 6.4 2.9 0.39 0.37 

5.0 35.0 90.0 5.6 3.5 0.51 0.5 

At the same time, the mathematical modeling and simulation of processes occurring in the 

nucleus—namely, corrosion and its primary controlling processes—are mainly governed by 

controlling factors. Specifically, nuclear processes, such as radioactive decay, nuclear reactions, 

and energy emission, can influence the adsorption of atoms or molecules on the surface. This 

influence primarily manifests in the following ways: 
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- Thermal effect – energy emitted from the nucleus increases the surface temperature, 

thereby altering the kinetics of adsorption. 

- Radiation-induced structural changes – alters the atomic structure of the surface, which can 

either enhance or reduce adsorption. 

- Disturbance of electron clouds – energetic particles can catalyze adsorption. 

Nuclear processes affect surface corrosion and adsorption primarily through three mechanisms: 

energy activation, structural modification, and changes in electron levels. 

In this section, the effect of nuclear energy (Q) on the adsorption transfer degree (θ) was eva-

luated by comparing real samples with the theoretical model. For calibration, a simplified Lang-

muir model was used, and the results were fitted using regression (Table 1). 

 Table 1. Effect of nuclear energy on the adsorption transfer degree 

Q (MeV) θ observed θ model θ regression 

0.50 0.120 0.645 0.090 

1.00 0.190 0.971 0.216 

1.50 0.310 0.998 0.343 

2.00 0.480 1.000 0.470 

2.50 0.630 1.000 0.597 

3.00 0.710 1.000 0.724 

Mathematical modeling of the effect of radiation on the mechanisms of corrosion and adsorption 

is also a relevant issue. Radiation alters the adsorption mechanism, and these changes include: 

- Increased surface activity; 

- Acceleration of desorption kinetics; 

- Disturbance of electron balance due to ionization and polarization. 

Radiation affects the main parameters of adsorption. The model takes these changes into 

account, allowing prediction of both the kinetic and thermodynamic aspects of adsorption. 

Let us consider the mathematical modeling of the effect of electron density on the mechanisms of 

corrosion and adsorption (on the Fe surface). In this study, the influence of electron density on 

the kinetics of adsorption and the degree of surface coverage on Fe is analyzed using a mathe-

matical model. 

Parameters for simulation conditions: 

Parameter Value Additional Note 

ρ₀ 1.5×10²¹ e/m³ Initial electron density 

Λ 0.1 μm⁻¹ Decay coefficient along the surface 

Γ 0.01 s⁻¹ Temporal decay coefficient 

kₐ 0.03 s⁻¹ Adsorption rate constant 

k_d 0.01 s⁻¹ Desorption rate constant 

Δ 0.4 Electron density influence coefficient 
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Figure 2: Graph of the change in surface coverage over time (on Fe surface) 

 

 
Figure 3: Graph of electron density variation with time and distance (on Fe surface) 

Electron density directly affects the kinetics of adsorption. On the Fe surface, high electron 

density leads to a faster increase in surface coverage. 

The kinetics of corrosion in oil pipelines are also influenced by the crystal lattice and dislocation 

mechanisms. The structure of crystal surfaces—namely FCC (Face-Centered Cubic), BCC (Body-

Centered Cubic) and HCP (Hexagonal Close-Packed) significantly affects the adsorption 

mechanism. Since the atomic packing density, surface energy, and active area vary across these 

surfaces, the probability and kinetics of adsorbate molecules binding to the surface also change. 

Let us present an extended Langmuir model that takes the type of crystal surface into account: 

𝜃(𝑡)  =  (𝐾_𝑖 ∙  𝑃 / (1 +  𝐾_𝑖 ∙  𝑃))  ∙  (1 −  𝑒^(−𝑘_𝑖 ∙  𝑡)) (5) 

Here: - θ(t): Surface coverage (as a function of time) 

- K_i: Adsorption constant (for crystal lattice type i) 

- P: Gas pressure (or concentration) 

- k_i: Adsorption kinetic constant 

- i ∈ {FCC, BCC, HCP} 

The adsorption constant is based on the Gibbs free energy: 

 𝐾_𝑖 =  𝐾_0 ∙  𝑒^(−𝛥𝐺_𝑎𝑑𝑠, 𝑖 / 𝑅𝑇)  =  𝐾_0 ∙  𝑒^(−𝛾_𝑖 ∙  𝐴_𝑠, 𝑖 / 𝑅𝑇) (6) 

- γ_i: Surface energy of crystal lattice type i 
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- A_s,i: Surface area 

- R: Universal gas constant 

- T: Temperature (K) 

Simulation conditions and parameters 

Based on real data, the following results were obtained (for example, adsorption of N₂ or CO on 

Fe, Cr, or Ti surfaces): 

Crystal Type γ_i (J/m²) A_s,i (nm²) K_i (1/atm) k_i (1/s) 

FCC (Fe, Cu) 2.45 1.2 0.8 0.15 

BCC (Cr, Mo) 2.15 1.6 0.6 0.12 

HCP (Zn, Ti) 1.85 2.0 0.5 0.10 

Crystal Type γ_i (J/m²) A_s,i (nm²) K_i (1/atm) k_i (1/s) 

-   FCC metals (e.g., Fe, Ni): High surface atomic density → high adsorption energies 

- BCC metals (e.g., Cr): Moderate adsorption 

- HCP metals (e.g., Ti, Zn): Weaker adsorption bonding 

The type of crystal lattice on the surface directly affects the kinetics and energy of adsorption. 

The mathematical model, taking these differences into account, serves as a powerful tool for 

predicting the dynamics of the adsorption process. In crystal structures, dislocation processes 

influence the surface properties of the material, thereby altering the adsorption mechanism. 

Dislocation lines create local variations in energy and stress on the crystal surface, causing 

adsorbates to preferentially occupy these regions. In this study, the effect of dislocation 

mechanisms on adsorption was mathematically modeled and simulated. 

Considering the dislocation mechanism, the kinetics of adsorption is modeled as follows: 

𝜃 =  [𝐾 · 𝑃 · 𝑒𝑥𝑝(−(𝐸𝑎 −  𝛽 · 𝜎_𝑑)/(𝑅𝑇))] / [1 +  𝐾 · 𝑃 · 𝑒𝑥𝑝(−(𝐸𝑎 −  𝛽 · 𝜎_𝑑)/(𝑅𝑇))] (7) 

Here: θ - degree of adsorption coverage 

K - adsorption constant 

P - partial pressure 

Ea - activation energy 

σ_d - stress generated due to dislocations 

β - coefficient representing the effect of stress energy 

R - universal gas constant 

T – temperature 

 

Figure 4. Effect of stress generated by the dislocation mechanism on adsorption coverage 
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Stress fields generated by dislocation processes reduce the energy barrier for adsorption on the 

surface, thereby increasing the adsorption rate. Simulation results showed that as the stress level 

increases, the surface coverage of adsorption also tends to increase. This finding demonstrates 

the dislocation mechanism has a strong influence on adsorption.  

. 

Figure 5. Effect of the dislocation mechanism on mass loss over time 

An important aspect affecting the kinetics of corrosion in oil pipelines is the mathematical 

modeling and simulation of the thermal effect of adsorption. The thermodynamic basis and the 

thermal effect of adsorption in the Langmuir adsorption model are expressed as follows: 

𝜃 =
(𝐾(𝑇)∙ 𝐶)

(1 +  𝐾(𝑇) ∙  𝐶) (8) 

Here: θ – surface coverage 

C – concentration of the adsorbate, 

K(T) – adsorption constant dependent on temperature 

The temperature dependence of K(T) is expressed using the Van’t Hoff equation: 

𝐾(𝑇)  =  𝐾₀ ∙  𝑒𝑥𝑝(−𝛥𝐻_𝑎𝑑𝑠 / (𝑅𝑇)) (9) 

ΔH_ads – enthalpy of adsorption (kJ/mol), 

R – universal gas constant 

T – temperature (K). 

In this case, the corrosion rate is modeled as follows: 

𝑉_𝑐𝑜𝑟𝑟(𝑇)  =  𝑉₀ ∙  (1 −  𝜃(𝑇))  =  𝑉₀ ∙  (1 −  (𝐾(𝑇)  ∙  𝐶) / (1 +  𝐾(𝑇) ∙  𝐶)) (10) 

Here:  

V_corr(T) – corrosion rate as a function of temperature 

V₀ – corrosion rate in the absence of inhibitors 

As the temperature increases, if ΔH_ads < 0 (exothermic adsorption), K(T) decreases, θ 

decreases, and the corrosion rate increases. The increase in desorption weakens the protective 

layer, exposing the surface to greater corrosion. Real data (for calibration): 
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Temperature (K) Experimental Vcorr (mm/year) Model Model (mm/year) 

298 0.12 0.11 

308 0.18 0.17 

318 0.26 0.25 

328 0.33 0.31 

338 0.41 0.38 

Taking the thermal effect of adsorption into account is critically important for inhibitor selection. 

Inhibitors with exothermic adsorption may lose their effectiveness at high temperatures. This 

model allows optimization of pipeline protection strategies according to thermo-mechanical 

conditions.  

3. Conclusion 

1. High concentrations of chloride ions and an acidic environment accelerate corrosion 

kinetics. 

2. Radiation alters the main parameters of adsorption. 

3. The type of crystal lattice on the surface directly affects the kinetics and energy of adsorption. 

4. Dislocation processes in crystal structures influence surface properties of the material, 

thereby altering the adsorption mechanism. Dislocation lines create local variations in 

energy and stress on the crystal surface, causing adsorbates to preferentially occupy these 

regions. 

5. Stress fields generated by dislocation processes reduce the energy barrier for adsorption on 

the surface, thereby increasing the adsorption rate. Simulation results showed that as the 

stress level increases, the surface coverage of adsorption also tends to increase. This finding 

demonstrates that the dislocation mechanism has a strong influence on adsorption. 
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1. Introduction 

It is well known that the failure of electrical equipment can lead to various injuries among 

operational personnel, disruption of technological processes, and severe accidents. Therefore, 

specific tests are conducted in advance to prevent such issues. In general, these tests are carried 

out in the following cases: commissioning of equipment or installations, after an accident, 

following scheduled or unscheduled maintenance, or after a certain period since the last 

inspection. Notably, high-voltage insulation testing of electrical equipment is mandatory for 

isolated neutral power networks with voltages up to 35 kV [1, 2]. 

In isolated neutral networks, performing high-voltage insulation tests under load conditions is of 

particular relevance for identifying potential equipment failures in advance and ensuring the 

uninterrupted power supply to consumers [3, 4]. Research conducted in this field indicates that 

various methods and tools have been proposed for such testing [5–7]. 

In [8], a method for testing insulation under load in isolated neutral networks is proposed. 

According to this method, artificial transient ground faults are created in the network based on 

Petersen's theory in order to test the insulation under load conditions. It should be noted that 

during such ground faults, the magnitude of overvoltage caused by arcing in the network 
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depends on the ground fault resistance, the ground fault angle, and the phase-to-ground 

capacitance of the network. Therefore, determining the ground fault resistance and angle in 

advance is essential for accurately selecting the test voltage. For this purpose, it is a relevant and 

important task to determine the dependence of arc overvoltage multiplicity—arising from 

transient ground faults in isolated neutral networks—on ground fault resistance, ground fault 

angle, and phase-to-ground capacitance of the network. 

2. Problem statement 

In general, to determine the dependencies among the aforementioned parameters, it is necessary 

to perform a numerical solution of the system of differential equations characterizing the 

transient process of single-phase earth fault in neutral isolated networks, using modern 

computational technologies. However, the numerical solution of this problem is considerably 

complicated due to the stiffness of the mentioned differential equations. In other words, since the 

system of differential equations is nonlinear, in some cases the stability of the solution is 

compromised and the results become distorted. Therefore, to overcome such difficulties, it is 

essential to obtain analytical expressions defining the dependencies of the arc overvoltage 

multiplicity (𝑘) on the earth fault resistance (𝑅0), the earth fault angle (𝜑), and the phase-to-

earth capacitance of the network (𝐶𝑓). It should be noted that for this purpose, the analytical 

dependencies of the arc overvoltage multiplicity on the earth fault resistance have been studied 

in [9,10], on the earth fault angle in [11,12], on the phase-to-earth capacitance in [13,14], and on 

both the earth fault resistance and the phase-to-earth capacitance in [15]. Continuing these 

studies, this work considers the derivation of a regression model describing the dependence of 

single-phase arc overvoltage in neutral isolated networks on the earth fault resistance and earth 

fault angle. 

3. Problem solving 

The derivation of an analytical expression for the dependency of the arc overvoltage multiple, 

occurring during single-phase faults in an isolated neutral electrical network (𝐶𝑓 = 𝑐𝑜𝑛𝑠𝑡), on 

the earth fault resistance and earth fault angle is considered. For this purpose, the results of 

experimental investigations conducted on a low-voltage model of an isolated neutral network 

(𝐶𝑓 = 1𝑚𝑘𝐹) are utilized, as presented in Table 1 [8]. 

Table 1.: Dependence 𝑘 = 𝑓(𝑅0, 𝜑)  

𝑅0, 𝑂ℎ𝑚 


 
30  

60  
90  

120  
150  

5  45,2
 

16,3
 

30,3
 

10,3
 

16,2
 

10  29,2
 

91,2
 

96,2
 

86,2
 

03,2
 

15  16,2
 

69,2
 

77,2
 

66,2
 

93,1
 

20  05,2
 

51,2
 

62,2
 

49,2
 

84,1
 

25  96,1
 

35,2
 

49,2
 

35,2
 

76,1
 

30  88,1
 

22,2  38,2
 

24,2
 

69,1
 

As seen from Table 1, the dependence between the multiple of the arc overvoltage, the ground 

fault resistance, and the ground fault angle can be approximated by the following regression 

equation [16]: 

,sin
0

cb
R

a
k    (1) 

here, 𝑎, 𝑏, 𝑐 − are regression coefficients. 
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If we introduce the substitutions 
1

𝑅0
= 𝑥 and 𝑠𝑖𝑛 𝜑 = 𝑦 in equation (1), the regression equation 

can be written in the following form: 

,cbyaxk   (2) 

In other words, the dependence of the arc overvoltage multiplicity (𝑘) on the conductivity of the 

ground fault circuit (𝑥) and the sine of the ground fault angle (𝑦) can be approximated by a 

linear regression equation (see Table 2). The choice of this model type is based on the assumption 

that if the variation of the output variable is directly proportional to the variations of the factor 

variables, then a linear model is considered adequate [17]. 

Table 2.: Dependence 𝑘 = 𝑓(𝑥, 𝑦) 

 Sm

x
 

y  

500,0  866,0  000,1  866,0  500,0  

200,0  45,2  16,3  30,3  10,3  16,2  

100,0  29,2  91,2  96,2  86,2  03,2  

067,0  16,2  69,2  77,2  66,2  93,1  

050,0  05,2  51,2  62,2  49,2  84,1  

040,0  96,1  35,2  49,2  35,2  76,1  

033,0  88,1  22,2  38,2  24,2  69,1  

The regression coefficients of equation (2) are defined by the following well-known expressions 

[17]: 
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 (3) 

where M(x), M(y) and M(k) denote the mathematical expectations (means) of the variables x, y, 

and k, respectively; σ(x), σ(y), and σ(k) denote the standard deviations of the variables x, y, and 

k, respectively; r(x,y) is the linear correlation coefficient between x and y; r(k,x) is the linear 

correlation coefficient between k and x; and r(k,y) is the linear correlation coefficient between k 

and y.  

The numerical values of the necessary statistical indicators for determining the regression 

coefficients and identifying the target model are calculated based on the correlation matrix 

presented in Table 3. The following notation is used for the correlation matrix: 

  2xMxA ii  ;   2yMyB ii  ;   2kMkC ii  ;  

     yMyxMxE iii  ;      xMxkMkP iii  ;      ;yMykMkT iii 

;
i

iii
i

k

kсbyax
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   .
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Table 3.: Correlation Table 
𝑖 𝑥𝑖 𝑦𝑖 𝑘𝑖 𝑨𝒊 𝑩𝒊 𝑪𝒊 𝑬𝒊 𝑷𝒊 𝑻𝒊 𝑳𝒊 𝑵𝒊 

1 0,200 0,500 2,45 0,01400278 0,06071797 0,001708 -0,02915854 0,0048911 -0,0101850 0,028818943 0,004985265 

2 0,200 0,866 3,16 0,01400278 0,01430781 0,564502 0,01415447 0,0889078 0,0898709 0,022324562 0,004976684 

3 0,200 1,000 3,30 0,01400278 0,06430781 0,794475 0,03000813 0,1054744 0,2260331 0,000706912 5,44199E-06 

4 0,200 0,866 3,10 0,01400278 0,01430781 0,477942 0,01415447 0,0818078 0,0826940 0,003401812 0,00011121 

5 0,200 0,500 2,16 0,01400278 0,06071797 0,061835 -0,02915854 -0,0294256 0,0612740 0,166947412 0,130036983 

6 0,100 0,500 2,29 0,00033611 0,06071797 0,014082 -0,00451752 -0,0021756 0,0292407 0,08192638 0,035198042 

7 0,100 0,866 2,91 0,00033611 0,01430781 0,251335 0,00219295 0,0091911 0,0599671 0,082049292 0,05700798 

8 0,100 1,000 2,96 0,00033611 0,06430781 0,303968 0,00464915 0,0101078 0,1398125 0,027213051 0,006488404 

9 0,100 0,866 2,86 0,00033611 0,01430781 0,203702 0,00219295 0,0082744 0,0539863 0,066001202 0,035631636 

10 0,100 0,500 2,03 0,00033611 0,06071797 0,143388 -0,00451752 -0,0069422 0,0933073 0,035659403 0,005240108 

11 0,067 0,500 2,16 0,00022500 0,06071797 0,061835 0,00369615 0,0037300 0,0612740 0,091211737 0,038815837 

12 0,067 0,866 2,69 0,00022500 0,01430781 0,079148 -0,00179423 -0,0042200 0,0336518 0,058799026 0,025017553 

13 0,067 1,000 2,77 0,00022500 0,06430781 0,130562 -0,00380385 -0,0054200 0,0916305 0,010814646 0,000897396 

14 0,067 0,866 2,66 0,00022500 0,01430781 0,063168 -0,00179423 -0,0037700 0,0300633 0,048183977 0,01642739 

15 0,067 0,500 1,93 0,00022500 0,06071797 0,229122 0,00369615 0,0071800 0,1179483 0,017089455 0,001087855 

16 0,050 0,500 2,05 0,00100278 0,06071797 0,128642 0,00780299 0,0113578 0,0883791 0,076448938 0,024561259 

17 0,050 0,866 2,51 0,00100278 0,01430781 0,010268 -0,00378782 -0,0032089 0,0121210 0,019072649 0,002291762 

18 0,050 1,000 2,62 0,00100278 0,06430781 0,044662 -0,00803034 -0,0066922 0,0535920 0,019213916 0,002534162 

19 0,050 0,866 2,49 0,00100278 0,01430781 0,006615 -0,00378782 -0,0025756 0,0097287 0,011193715 0,000776868 

20 0,050 0,500 1,84 0,00100278 0,06071797 0,323382 0,00780299 0,0180078 0,1401252 0,028956347 0,002838724 

21 0,040 0,500 1,96 0,00173611 0,06071797 0,201302 0,01026709 0,0186944 0,1105560 0,055378625 0,011781388 

22 0,040 0,866 2,35 0,00173611 0,01430781 0,003442 -0,00498397 0,0024444 -0,0070174 0,029917391 0,004942915 

23 0,040 1,000 2,49 0,00173611 0,06430781 0,006615 -0,01056624 -0,0033889 0,0206253 0,055629991 0,019187424 

24 0,040 0,866 2,35 0,00173611 0,01430781 0,003442 -0,00498397 0,0024444 -0,0070174 0,029917391 0,004942915 

25 0,040 0,500 1,76 0,00173611 0,06071797 0,420768 0,01026709 0,0270278 0,1598381 0,051964713 0,008364547 

26 0,033 0,500 1,88 0,00233611 0,06071797 0,279488 0,01190982 0,0255522 0,1302688 0,03001239 0,003183588 

27 0,033 0,866 2,22 0,00233611 0,01430781 0,035595 -0,00578140 0,0091189 -0,0225674 0,077668775 0,02973027 

28 0,033 1,000 2,38 0,00233611 0,06430781 0,000822 -0,01225684 0,0013856 -0,0072696 0,092704827 0,048680901 

29 0,033 0,866 2,24 0,00233611 0,01430781 0,028448 -0,00578140 0,0081522 -0,0201751 0,068046732 0,023233283 

30 0,033 0,500 1,69 0,00233611 0,06071797 0,516482 0,01190982 0,0347356 0,1770868 0,079039472 0,017842737 

 2,450 22,392 72,26 0,09819444 1,28615612 5,390747 0,00000000 0,4106667 1,998843 1,4663 0,5668 

The data array consists of a volume of n=30, and the values of the statistical indicators necessary 

for determining the coefficients, obtained as a result of calculations, are presented below. 
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Based on Table 3, variances, root mean square deviations, two-dimensional covariance 

coefficients (correlation moments), and two-dimensional correlation coefficients for individual 

quantities are calculated using well-known formulas. The obtained numerical values are as 

follows: 
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Then, based on expressions (3), the estimated values of the regression coefficients of equation (1) 

or (2) are obtained as follows: 

;18,4a  ;55,1b .91,0c  

Thus, once the regression coefficients have been determined, the relationship (2) between the 

multiplicity of the arc overvoltage arising during single-phase non-stationary ground faults in 

isolated neutral networks, the conductivity of the ground fault loop, and the sine of the ground 

fault angle can be explicitly expressed as follows: 

𝑘 = 4,18𝑥 + 1,55𝑦 + 0,91, (4) 

Let us verify the adequacy of the obtained regression dependence (4) between the conductivity 

of the single-phase transient ground fault circuit and the sine of the ground fault angle in relation 

to the overvoltage multiplicity during single-phase non-stationary ground faults. To do this, we 

can calculate the multiple correlation coefficient and assess its significance using the Fisher 

criterion [17]. 

The value of the multiple correlation coefficient is determined by the following well-known 

expression: 
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A multiple correlation coefficient close to one (𝑅 = 0,95 → 1) indicates that the relationship 

between the recurrence of arc overvoltages, the conductivity of the ground fault circuit, and the 

sine of the ground fault angle can be considered a strong linear correlation. 

The significance of the multiple correlation coefficient is tested using the F-Fisher criterion. It is 

known that, at a significance level of α, the regression equation is considered adequate if the 

condition 𝐹 > 𝐹(𝛼, 𝑞1, 𝑞2) is satisfied [17], where 𝑞1 and 𝑞2 are the degrees of freedom. 
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The empirical value of the F-Fisher criterion, based on the given data, is determined as follows: 

,
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  (5) 

Here, n is the number of experiments, n = 30; m is the number of factors, m = 2. According to 

equation (5), the value of 𝐹 = 125,4. 

The critical value of the Fisher criterion F is obtained from the table depending on the 

significance level (𝛼) and the degrees of freedom (𝑞1, 𝑞2) [17]: 

;05,0  ;21  mq ;27123012  mnq   .35,3,, 21 qqF   

Since 𝐹 = 125,4 > 𝐹(𝛼, 𝑞1, 𝑞2) = 3,35, the multivariate correlation coefficient (𝑅 = 0,95) and the 

statistical significance of the regression equation are confirmed. 

The mean relative error and the mean square error of the approximation are determined by the 

following known expressions, respectively: 
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The determination coefficient of 𝑅2 = 0,952 = 0,9025 indicates that 90,25% of the variation in 

the arc overvoltage multiplication factor (k) is primarily caused by changes in the ground fault 

circuit conductance (x) and the sine of the ground fault angle (y), while the remaining variation 

9,75 % is attributed to other unaccounted factors. 

Thus, the dependence of the arc overvoltage multiplication factor on the ground fault resistance 

and the ground fault angle in neutral isolated networks under non-stationary ground faults can 

be explicitly expressed as follows: 

,91,0sin55,1
18,4

0

 
R

k  (6) 

As can be seen, during single-phase transient ground faults, the regression model obtained in the 

form of equation (6) represents a simple and practically applicable relationship between the 

parameters. 

Based on the regression equation derived using the OriginLab software [18], a 3D (spatial) 

representation of the dependency of the arc overvoltage multiplication factor on the ground fault 

resistance and the ground fault angle has been constructed (Figure 1). 
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Figure 1. 3D visualization of the dependence of arc overvoltage multiplicity                                                                                          

on ground fault resistance and ground fault angle 

4. Conclusion 

1. A practically implementable regression model has been developed to describe the depen-

dence between the arc overvoltage multiplicity, ground fault resistance, and ground fault 

angle in neutral-isolated networks subjected to non-stationary ground faults governed by 

the Petersen theory. 

2. The obtained regression model can be readily applied for insulation testing under load 

conditions in neutral-isolated networks of the Azerenergy system, as well as for the 

investigation and analysis of results related to non-stationary ground faults occurring in the 

network. 
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